期刊文献+

广义Weibull分布参数的收缩估计 被引量:3

Shrinkage Estimation of Generalized Weibull Parameter in Censored Samples
下载PDF
导出
摘要 在右删失样本下,研究了双参数广义Weibull分布参数的极大似然估计。针对在小样本或高度删失样本下参数估计效果差的问题,引入了收缩估计方法,将先验信息与样本信息相结合,用于改善参数估计。分别在单参数和双参数含有先验信息两种情形下,给出了分布参数的收缩估计。以定数截尾样本为例,利用Monte-Carlo方法对收缩估计与极大似然估计进行了比较,模拟结果表明在一定的条件下,收缩估计具有更优的统计性质。数值算例表明,在小样本或高度截尾样本下,双参数广义Weibull分布参数的收缩估计具有较好的效果。 The estimation of two parameter generalized Weibull model was studied under type Ⅱ censored samples. To draw better inferences, the shrinkage estimation was introduced to combine the sample information with the relevant prior information. Then two different shrinkage estimations of the generalized Weibull parameter were proposed in two cases of different prior information, Compared with the maximize likelihood estimation, the relative efficiency of the shrinkage estimations was studied by Monte- Carlo simulation. And the result shows that the shrinkage estimations are better under center conditions, especially when the sample size is small or samples are highly censored. The illustrative example shows that the shrinkage estimations of the generalized Weibull parameter are available for reliability analysis.
出处 《宇航学报》 EI CAS CSCD 北大核心 2009年第6期2442-2446,共5页 Journal of Astronautics
基金 总装预研重点基金(9140A19030106HK0108)
关键词 可靠性 广义Weibull分布 收缩估计 先验信息 样本信息 Reliability Generalized Weibull model Shrinkage estimation Prior infommtion Sample information
  • 相关文献

参考文献15

  • 1马小兵,赵宇.含位置参数的广义Weibull分布及其置信限估计[J].系统工程与电子技术,2008,30(4):777-779. 被引量:1
  • 2Xie M, Tang Y, Goh T N. A modified weibull extension with bathtub-shaped failure rate function[ J ]. Reliability Engineering & System Safety, 2002, 76:279-285.
  • 3Gurvieh M R, Dibenedetto A T, Rande S V. A new statistical distribution for characterizing the random strength of brittle materials[ J]. Journal of Materials Science, 1997,32 : 2559 - 2564.
  • 4Wu J W, Lu H L, Chen C H, et al. Statistical inference about the shape parameter of the new two-parameter bathtub-shaped lifetime distribution [J]. Quality and Reliability Engineering International, 2004, 20:607 - 616.
  • 5Nadarajah S, Kotz S. On some recent modifications of Weibull distribution[J]. IEEE Transaction on Reliability, 2005, 54(4):561 - 562.
  • 6李进,黄敏,赵宇.威布尔分布的极大似然估计的精度分析[J].北京航空航天大学学报,2006,32(8):930-932. 被引量:17
  • 7Singh H P, Saxena S, Joshi H. A family of shrinkage estimators for weibull shape parameter in censored sampling[J]. Statistical Papers, 2008, 49(1) :513 - 529.
  • 8Johnson N L, Kotz S, Balakrishnan N. Continuous Univariate Distributions[M]. Wiley, Singapore, 2004,1.
  • 9Kaminskiy M P, Krivtsov V V. A simple procedure for Bayesian estimation of the Weibull distribution[ J]. IEEE Transaction on Reliability, 2005, 54(4): 612-616.
  • 10Dey D K, Kuo L. A new empirical Bayes estimator with Type-Ⅱ censored data. Computational Statistics & Data Analysis, 1991, 12:271 - 279.

二级参考文献19

  • 1肖良华,赵宇,黄敏.引入位置参数的三参数Weibull过程及其点估计方法[J].北京航空航天大学学报,2004,30(9):897-900. 被引量:6
  • 2徐人平,傅惠民,高镇同,李社进.置信限曲线等同性原理及其应用[J].科技通报,1996,12(1):10-15. 被引量:1
  • 3Xie M, Tang Y, Goh T N. A modified Weibull extension with bathtub-shaped failure rate funetion[J]. Reliability Engineering & System Safety,2002, 76:279 - 285.
  • 4Gurvich M R, Dibenedetto A T, Rande S V, A new statistical distribution for characterizing the random strength of brittle materials[J].Journal of Materials Science, 1997, 32:2559 - 2564.
  • 5Wu J W, Lu H L, Chen C. H, et al. Statistical inferenee about the shape parameter of the new two-parameter bathtub-shaped lifetime distribution[J]. Quality and Reliability Engineering International, 2004, 20:607 - 616.
  • 6Chen Z. A new two-parameter lifetime distribution with bathtub .shape or inereasing failure rate funetion[J]. Statistics and Probability Letters, 2002, 49: 155-161.
  • 7Lai C D, Xie M, Murthy D N P. Modified Weibull model[J]. IEEE Trans. on Reliability, 2003, 52(1) : 33 - 37.
  • 8Saralees Nadarajah, Samuel Kotz, On some recent modifications of Weibull distribution[J]. IEEE Trans. on Reliability, 2005, 54(4):561-562.
  • 9Kapur K C, Lamberson L R. Reliability in engineering design [M]. John Wiley & Sons, 1977.
  • 10费鹤良,产品寿命分析方法,1988年

共引文献20

同被引文献35

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部