期刊文献+

基于扬程自适应的机泵高效节能控制 被引量:1

A High Efficient Self-Adaptive Head-Based Control for Energy Saving of a Pump
下载PDF
导出
摘要 针对静扬程时变的机泵取水高能耗问题,在综合分析机泵性能的基础上,给出了随工况动态变化的扬程自适应律(SAH),机泵运行工况与其静扬程及效率的关系图;并提出了系统约束条件下基于SAH律的调速节能控制法。通过SAH控制法可准确推算出当前工况高效运行点、匹配静扬程变化,使机泵工况点保持在满足相似工况的效率极大值曲线上,实现最大程度提高机泵运行效率节能降耗的目的。实验结果表明,相同的转速变化下,与按照额定转速最高效率点设计静扬程(DHHE)的调速控制法比较,SAH控制法节电效果更好;且当不同工况点流量满足一定的不等式关系时,取每千吨水节电幅度随转速降低而增加。 Aiming at the problem of high energy consumption of intake pump with time-dependent static head, the law of self-adaptive head (SAH) varied by the variation of operating condition is presented, which based on the integrated analysis of the pump's performance. The relation ship between the pump's operational condition and its efficiency and static head is also proposed. To achieve the lowest energy consumption performance, the variable-speed control method under the constrained condition is presented, which based on the law of SAH. Operation points of maximum efficiency could be deduced exactly by SAH control method, matching variation of static head to keep operation points on the curve of maximum efficiency which is consistent with the affinity laws. The object of energy saving could be achieved by SAH control method that improves the efficiency of pump in the maximal degree. The experimental result indicates that when the same variation of speed is considered, SAH control method is better than the conventional variable-speed control method which based on the law of design head according highest efficiency of nominal speed (DHHE) in the aspect of electricity saving effect, and the electricity saved of the pump per thousand ton water by the SAH control method increases with less pump speed when the flux of different conditions meets a inequality.
出处 《电工技术学报》 EI CSCD 北大核心 2009年第11期48-52,共5页 Transactions of China Electrotechnical Society
基金 国家973计划(2009CB320602) 浙江省重大专题(2006C11227)资助项目
关键词 机泵 时变静扬程 高效节能 调速控制 Pump, time-dependent static head, energy saving of high efficiency, variable-speed control
  • 相关文献

参考文献11

  • 1Xu B, Yang J, Yang H Y. Comparison of energysaving on the speed control of the VVVF hydraulic elevator with and without the pressure accumulator[J] Mechatronics, 2005, 15(10): 1159-1174.
  • 2Johnson K E, Pao L Y, Balas M J, et al. Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture[J]. IEEE Control Systems Magazine, 2006, 26(3): 70-81.
  • 3Yang H Y, Yang J, Xu B. Computational simulation and experimental research on speed control of VVVF hydraulic elevator[J]. Control Engineering Practice, 2004,12(5): 563-568.
  • 4Ardanuy J F, Wilhelmi J R, Mora J J F, et al. Variable-speed hydro generation: operational aspects and control[J]. IEEE Transactions on Energy Conversion, 2006, 21(2): 569-574.
  • 5Xu X Y, Yu W N. Application of neuron-based adaptive control system to the operation of marine water pumps[C]. Canadian Conference on Electrical and Computer Engineering, 2005: 1355-1358.
  • 6汪雄海,石宏宇.污水泵站系统的预测控制[J].电工技术学报,2003,18(5):79-82. 被引量:13
  • 7He Z J, Wang X H. Adaptive parameter estimation- based predictive multi-model switching control of drainage systems[C]. The Sixth World Congress on Intelligent Control and Automation, 2006: 6540- 6543.
  • 8张承慧,夏东伟,石庆升.计及变频器和电机损耗的全变速泵站效率优化控制[J].电工技术学报,2006,21(5):52-57. 被引量:19
  • 9Mahdi M J, Miguel A M, Abbas A. Optimal design and operation of irrigation pumping stations[J]. Journal of Irrigation and Drainage Engineering, 2003,129(3):149-154.
  • 10何中杰,汪昆,汪雄海.污水排放系统优化控制机理及策略[J].电工技术学报,2006,21(5):117-121. 被引量:10

二级参考文献19

  • 1Yagi-s Shiba-s. Application of genetic algorithms and fuzzy control to a combined sewer station. Water Science and Technology, 1999, 39 (9): 217--224.
  • 2Yuri A E. Mathematical modeling for optimized control of Moscow's sewer network. Applied Mathematical Modeling, 1999, 23: 543-556.
  • 3Tan P C, Dabke K P. Modeling and control of sewer flow for reduced cost operation of a sewage pumping station.IEEE Transaction on Systems, Man and Cybernatics, 1988, 18:807-813.
  • 4Ermolin Yuri A.Mathematical modelling for optimized control of Moscow's sewer network.Applied Mathema-tical Modelling,1999,23(7):543~556
  • 5Hsu M H,Chen S H.Inundation simulation for urban drainage basin with storm sewer system.Journal of Hydrology,2000,(234):21~37
  • 6Yagi-s shiba-s.Application of Genetic Algorithms and Fuzzy Control to a Combined Sewer Station.Water Science And Technology,1999,39(9):217~224
  • 7Tan P C,Dabke K P.Modeling and control of sewer flow for reduced cost operation of a sewage pumping station.IEEE Transaction on Systens,Man and Cybernatics,1988,18:807~813
  • 8Martin Pleau,Hubert Colas,Pierre Lavalleea,et al.Global optimal real-time control of the Quebec urban drainage system.Environmental Modelling & Software,2005,20:401~413
  • 9Hartman M,Lowiec E,Boguslawski P.Water pumping stations remote control system in depression areas based GSM-900 cellular communications system:Proceedings of the International Conference on Ukraine,2002:291~293
  • 10Figueras J,Cembrano G,Puig V,etal.CORAL off-line:an object-oriented tool for optimal control of sewer networks.Proceedings of 2002 IEEE International Symposium on Computer Aided Control System Design,Glasgow,Scotland,U.K,2002:224~229

共引文献39

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部