期刊文献+

超声溶栓对血红细胞结构形态的影响 被引量:1

Effects of Thrombolysis by Ultrasound on the Structure of Erythrocyte
下载PDF
导出
摘要 应用低频高能超声波消溶全血细胞血栓、探讨超声强度及作用(消融)时间对血红细胞结构形态的影响及其安全剂量阈值。在血栓消溶条件下,用生物显微镜观察血栓细胞结构形态改变,得到了超声强度及作用时间与血栓消融状态下的关系图。结果表明,超声波具有肯定的溶栓作用,该作用与超声强度和消溶时间及细胞结构形态可分为A、B、C三个特征区域,即A区为超声溶栓安全剂量区;B区为相对安全区;C区为不可逆损伤区。研究还发现,超声强度大小及消融时间长短,对血红细胞结构形态有明显影响。声强过大或作用时间过长,均对血红细胞造成不可逆损伤。随着超声强度增加,可加速其消融过程,缩短消融时间。 The effects of the ultrasonic intensity and the effect time on the structure of erythrocyte and the threshold of safe dose have been investigated by using the low-frequency and high power ultrasonic wave to ablate the all blood cells thrombus. The structure of erythrocyte in thrombolysis was evaluated by light microscope under the condition of thrombus ablation. The relationship between the structure of erythrocyte in thrombus and ultrasound intensity and effect time was got. The result showed that the ultrasonic wave did eliminate the thrombus. According to the change of the structure of erythrocyte in thrombus and ultrasound intensity and effect time,the effects of thrombolysis by ultrasound could be divided into three kinds,that is the A,B,C area. The A area was the safe area,the B area was the relatively safe area,and the C area was the unsafe area. The results also showed that the ultrasound intensity and effect time had great impact on the structure of erythrocyte. Greater ultrasound intensity or longer effect time could cause irreversible damage to erythrocyte. The process of the thrombus ablation could be accelerated and the effect time could be shortened with the increase of the ultrasound intensity. So the study of effects of thrombolysis by ultrasound on the structure of erythrocyte and its threshold of safe dose had practical significance.
作者 严碧歌
出处 《压电与声光》 CSCD 北大核心 2009年第6期912-914,共3页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(10074043) 陕西省自然科学基金资助项目(2003A05)
关键词 超声波 血栓消溶 细胞结构 安全剂量 ultrasonic wave thrombus ablation cell structure safe dese
  • 相关文献

参考文献14

  • 1ATAR S,LUO H, NAGAI T, et al. Ultrasonic thrombolysis: catheter-delivered and transcutaneous applications[J]. Eur J Ultrasound 1999,9 (1) : 39-54.
  • 2WANG X K, XU L. An optimized murine model of ferric chloride-induced arterial thrombosis for thrombosis researeh[J].Thromb Res 2005,115(1-2) :95-100.
  • 3ROSENSCHEIN U, BERNSTEIN J J,DISEGNI E, et al. Experimental ultrasonic angioplasty: disruption of atheroselerotic plaques and thrombi in vitro and arterial recanalization in vivo[J].J Am Coll Cardiol, 1990,15 (3) :711-717.
  • 4ROSENSCHEIN U, ROTH A, RASSIN T, et al. Analysis of coronary ultrasound thrombolysis endpoints in acute myocardial infarction (ACUTE Trial) [J]. Circulation, 1997, 95(6):1 411-1 416.
  • 5HAMM C W, REIMERS J, KOSTER R. Coronary ultrasound thrombolysis in a patient with acute myocardial infarction[J]. Lancet, 1994, 343(8 897) : 605- 606.
  • 6JIA RY, SHEN X D, LI Z S. External therapeutic ul-trasound accelerate rabbit femoral thrombolysis with streptokinase[J]. Chinese Journal of Ultrasound in Medicine, 1997,13(9) : 5-7.
  • 7ARIANI M. Dissolution of peripheral arterial thrombi by ultrasound[J]. Circulation, 1991, 84 (4) : 1 680- 1 688.
  • 8严碧歌.超声消溶血栓凝龄与声学参量的关系[J].压电与声光,2008,30(6):751-752. 被引量:1
  • 9TACHIBANA K, TACHIBANA S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis[J]. Circulation, 1995, 92(5): 1 148-1 150.
  • 10FRANCIS C W, ONUNDARSON P T, CHRISTENSEN E L. Ultrasound accelerates recombinant tissuetype plasminogen activator into clots[J]. Ultrasound Med Biol, 1995, 21(3): 419-424.

二级参考文献9

同被引文献17

  • 1Miller DL, Thomas RM, Williams AR. Mechanisms for hemolysis by ultrasonic cavitation in the rotating exposure system[J]. Ultrasound Med Biol, 1991,17(2):171-178.
  • 2Datta S, Coussios CC, McAdory LE, et al. Correlation of cavitation with ultrasound enhancement of thrombolysis[J]. Ultrasound Med Biol, 2006,32(8):1257-1267.
  • 3Xu Z, Fan Z, Hall TL, et al. Size measurement of tissue debris particles generated from pulsed ultrasound cavitational therapy-histotripsy[J]. Ultrasound Med Biol, 2009,35(2):245-255.
  • 4Kornoeski R, Meltezer RS, Cheminine A, et al. Does external ultrasound accelerate thrombolysis results from a rabit model[J]. Circulation, 1994,89(1):339-344.
  • 5Siegel RJ, Atar S, Fishbein MC, et al. Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries[J]. Echocardiography, 2001,18(3):247-257.
  • 6Will-Shahab L, Rosenthal W, Schulze W, et al. G protein function in the ischaemic myocardium[J]. Eur Heart J, 1991,12 Suppl F:135-138.
  • 7Nilsson AM, Odselius R, Roijer A, et al. Pro- and antifibrinolytic effects of ultrasound on streptokinase-induced thrombolysis[J]. Ultrasound Med Biol, 1995,21(6):833-840.
  • 8Tsivgoulis G, Eggers J, Ribo M, et al. Safety and efficacy of ultrasound-enhanced thrombolysis: a comprehensive review and meta-analysis of randomized and nonrandomized studies[J]. Stroke, 2010,41(2):280-287.
  • 9Eggers J, Koch B, Meyer K, et al. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion[J]. Ann Neurol, 2003,53(6):797-800.
  • 10Maxwell AD, Owens G, Gurm HS, et al. Noninvasive treatment of deep venous thrombosis using pulsed ultrasound cavitation therapy (histotripsy) in a porcine model[J]. J Vasc Interv Radiol, 2011,22(3):369-377.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部