期刊文献+

基于局部脉冲响应的约束子结构修正法 被引量:4

ISOLATED SUBSTRUCTURE MODEL UPDATING METHOD BASED ON LOCAL IMPULSE RESPONSE
原文传递
导出
摘要 该文针对局部子结构为修正对象的情况,提出只利用整体结构中局部子结构部分的脉冲响应即可以精确修正子结构模型的约束子结构方法。它是利用子结构位置的脉冲响应,计算需要施加在结构边界的支座反力,构造出约束子结构的脉冲响应,然后由特征系统实现法(ERA)方法识别出构造响应的模态,进而修正子结构。约束子结构是指在子结构边界施加虚拟支座后的独立结构,它含有单元少而更有利于模型修正。通过修正约束子结构的单元刚度,间接修正整体结构中的子结构,不但可剔除整体结构其他部分的误差对子结构模型修正的影响,提高修正精度,而且可提高计算效率。该文以十跨桁架模型为例,分别利用子结构位置的位移脉冲、速度脉冲和加速度脉冲构造约束子结构并修正子结构,验证了方法的有效性,并分析了噪声对方法的影响。 A substructure isolation method is proposed to update a local substructure by utilizing the impulse response at the corresponding substructural location of the whole structure, which is significant when only a local part of the structure is interested. Firstly support pressures needed to apply on the substructural boundary are estimated via impulse response at the location of a substructure, in order to construct the impulse response of an Isolated Substructure. Then Eigensystem Realization Algorithm (ERA) is used to identify the modal parameters of the constructed impulse response, thereby the local substructure is updated through the model identification and model updating of an isolated Substructure, an individual structure by applying numerical support on the substructural boundary. It contains fewer elements and can be updated easier with high computational efficiency, as well as improved computational precision since that the influence from the other parts of structure is eliminated. A numerical example of a plane truss is given and validates that a substructure could be updated successfully by using the displacement, velocity and acceleration impulse response at the substructural location respectively even with 10% Gauss noise.
出处 《工程力学》 EI CSCD 北大核心 2009年第11期23-30,共8页 Engineering Mechanics
基金 国家自然科学基金重点项目(50538020) 国家科技支撑计划项目(2006BAJ03B05)
关键词 结构健康监测 模型修正 约束子结构 模态识别 脉冲响应 structure health monitoring model updating isolated substructure model identification impulse response
  • 相关文献

参考文献11

  • 1欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12. 被引量:120
  • 2Baruch M, Itzhack Y B. Optimal weighted orthogonalization of measured modes [J]. AIAA Journal, 1978, 16(4): 346-351.
  • 3Kabe A M. Stiffness matrix adjustment using mode data [J]. AIAA Journal, 1985, 23(9): 1431-- 1436.
  • 4Farhat C, Hemez F M. Updating finite element dynamic models using an element-by-element sensitivity methodology [J]. AIAA Journal, 1993, 31(9): 1702-- 1711.
  • 5Kuo C P, Wada B K. Nonlinear sensitivity coefficients and corrections in system identification [J]. AIAA Journal, 1987, 25(11): 1463-- 1468.
  • 6Peng Z, Song J. Invariant theorem of relative sensitivity summation and higher order sensitivity analysis applied to structural modification [C]// Alfred L W, Dominick J, DeMichele. Proceedings of the 4th International Modal Analysis Conference, Los Angeles, 1986-02-03-06. Kissimmee: Union College, 1986: 66--74.
  • 7Zimmerman D C, Widengren M. Correcting finite element models using a symmetric eigen-structure assignment technique [J]. AIAA Journal, 1990, 28(9): 1670-- 1676.
  • 8Lin R M, Ewins D J. Model updating using FRF data, fifteenth international modal analysis seminar [C]. K.U. Leuven, Belgium, 1990:141 -- 163.
  • 9侯吉林,欧进萍.基于局部时间序列的约束子结构修正法[J].振动工程学报,2009,22(3):305-312. 被引量:5
  • 10侯吉林,欧进萍.基于局部模态的约束子结构模型修正法[J].力学学报,2009,41(5):748-756. 被引量:14

二级参考文献21

  • 1欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005,19(1):8-12. 被引量:120
  • 2谢献忠,易伟建.结构物理参数时域识别的子结构方法研究[J].工程力学,2005,22(5):94-98. 被引量:15
  • 3樊素英,李忠献.桥梁结构物理参数识别的双单元子结构法[J].工程力学,2007,24(6):68-72. 被引量:9
  • 4Baruch M, Bar-Itzhack Y. Optimal weighted orthogonalization of measured modes [J]. AIAA Journal, 1978,16 (4) : 346-351.
  • 5Kabe A M. Stiffness matrix adjustment using mode data[J]. AIAA Journal, 1985,23(9) : 1 431-1 436.
  • 6Farhat C, Hemez F M. Updating finite element dynamic models using an element-by-element sensitivity methodology[J]. AIAA Journal, 1993,31 (9) : 1 702- 1 711.
  • 7Kuo C P, Wada B K. Nonlinear sensitivity coefficients and corrections in system identification [J]. AIAA Journal. 1987,25(11):1 463-1 468.
  • 8Zhao J, Dewolf J T. Sensitivity study for vibrational parameters used in damage detection[J]. Journal of Structure Engineering (ASCE), 1999, 125 (4) : 410- 416.
  • 9Zimmerman D C, Widengren M. Correcting finite element models using a symmetric eigenstructure assignment technique [J]. AIAA Journal, 1990, 28 (9): 1 670-1 676.
  • 10Lin R M, Ewins D J. Model updating using FRF data [A]. The Fifteenth International Modal Analysis Seminar[C], KU Leuven, Belgium, 1990:141-163.

共引文献131

同被引文献33

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部