期刊文献+

考虑拉伸与压缩不同徐变特征的混凝土连续墙早龄内应力分析 被引量:8

EARLY-AGE STRESS ANALYSIS OF CONCRETE DIAPHRAGM WALL THROUGH TENSILE AND COMPRESSIVE CREEP MODELING
原文传递
导出
摘要 以某大型交通枢纽地下连续墙为工程背景,首先讨论了早龄混凝土分别针对受拉和受压状态的应力松弛特性,给出了考虑不同力学状态的混凝土早龄内应力计算方法;然后设计和实施了地下连续墙体实体模型试验,通过实体模型模拟了地下连续墙初衬与内衬之间的连续构造和滑动构造,采用埋入式温度、应变传感器测量了模型墙体内部的温度历程和应变历程;结合已经校准的混凝土早龄拉伸徐变规律以及现场混凝土材料力学特性,实现了对模型墙体的内应力发展历程的仿真计算,并通过与实测数据的对比验证了仿真结构的正确性;最后,对真实结构中的足尺连续墙体进行了数值分析,根据计算结果讨论了初衬与内衬之间的合理构造方式以及早龄开裂风险。 For the early-age stress analysis of a massive concrete diaphragm wall in the underground part of a transport complex hub, this paper presents firstly the stress analysis algorithm considering both tensile and compressive creep behaviors of early-age concrete. Then the in-situ large-scale model test of a diaphragm wall is designed and performed to simulate the sliding and continuous connections between the inner and external layers. Thermal and strain sensors are installed to record the temperature and strain histories inside the model wall. With available mechanical properties and calibrated tensile creep law for the structural concrete, the stress analysis is effectuated on the model wall and the results are validated by the in-situ measurements. Furthermore, the stress analysis is performed on the full scale diaphragm wall. Based on the numerical results, the rational connection option between layers and cracking risk of the diaphragm wall are discussed.
出处 《工程力学》 EI CSCD 北大核心 2009年第11期80-87,共8页 Engineering Mechanics
关键词 拉伸徐变 地下连续墙 早龄内应力 开裂风险 模型试验 tensile creep diaphragm wall early-age stress cracking risk model test
  • 相关文献

参考文献10

  • 1Kwak H G, Ha S J, Kim J K. Non-structural cracking in RC walls Part I. Finite element formulation [J]. Cement and Concrete Research, 2006, 36(4): 749--760.
  • 2Yuan Y, Wan Z L. Prediction of cracking within early-age concrete due to thermal, drying and creepbehaviour [J]. Cement and Concrete Research, 2002, 32(7): 1053-- 1059.
  • 3Ostergaard L, Lange D A, Altoubat S A, Stang H. Tensile basic creep of early-age concrete under constant load [J]. Cement and Concrete Research, 2001, 31(12): 1895-- 1899.
  • 4Umehara H, Uehara T, Iisaka T, Sugiyama A. Effect of creep in concrete at early ages on thermal stress[C]// Shringenschmid R. Thermal Cracking in Concrete at Early Ages. London: E & F N Spon, 1995: 79--86.
  • 5巨玉文,李克非,韩建国.混凝土早龄拉伸徐变的试验与理论研究[J].工程力学,2009,26(9):43-49. 被引量:9
  • 6Zhang T, Qin W Z. Tensile creep due to restraining stresses in high-strength concrete at early ages [J]. Cement and Concrete Research, 2006, 36(3): 584--591.
  • 7Bissonnette B, Pigeon M, Vaysburd A M. Tensile creep of concrete: Study of its sensitivity to basic parameters [J]. ACI Materials Journal, 2007, 104(4): 360--368.
  • 8Cusson D, Hoogeveen T. An experimental approach for the analysis of early-age behavior of high-performance concrete structures under restrained shrinkage [J]. Cement and Concrete Research, 2007, 37(2): 200--209.
  • 9Springenschmid R, Gierlinger E, Kiemozycki W. Thermal stresses in mass concrete: a new testing method and the influence of different cements [C]. Proc 15th ICOLD Congress. Lausanne, 1985: 57--72.
  • 10Bazant Z P. Mathematical models for creep and shrinkage of concrete[C]//Bazant Z P, Wittmann F H. Creep and Shrinkage in Concrete Structures. New York: John Wiley and Sons, 1982: 163--256.

二级参考文献14

  • 1Kwak H G, Ha S J, Kim J K. Non-structural cracking in RC walls Part Ⅰ. Finite element formulation [J]. Cement and Concrete Research, 2006, 36(4): 749-760.
  • 2Ostergaard L, Lange D A, Altoubat S A, Stang H. Tensile basic creep of early-age concrete under constant load [J]. Cement and Concrete Research, 2001, 31(12): 1895- 1899.
  • 3Umehara H, Uehara T, Iisaka T, Sugiyama A. Effect of creep in concrete at early ages on thermal stress[C]// Shringenschmid R. Thermal cracking in Concrete at Early Ages. London: E & FN Spon, 1995: 79-86.
  • 4See H T, Attiogbe E K, Miltenberger M A. Shrinkage cracking characteristics of concrete using ring specimens [J]. ACI Materials Journal, 2003, 100(3): 239-245.
  • 5Cusson D, Hoogeveen T. An experimental approach for the analysis of early-age behavior of high-performance concrete structures under restrained shrinkage [J]. Cement and Concrete Research, 2007, 37(2): 200-209.
  • 6Springenschmid R, Gierlinger E, Kiernozycki W. Thermal stresses in mass concrete: a new testing method and the influence of different cements[C]. Proc. 15th ICOLD Congress. Lausanne, 1985: 57-72.
  • 7Bissonnette B, Pigeon M, Vaysburd A M. Tensile creep of concrete: Study of its sensitivity to basic parameters [J].ACI Materials Journal, 2007, 104(4): 360-368.
  • 8Bazant Z P, Osman E. Double power law for basic creep of concrete [J]. RILEM, Materials and Structures, 1976, 9(49): 3- 11.
  • 9Comite Euro-Intemational du Beton. CEB-FIP Model Code [M]. London: Tomas Telford, 1993.
  • 10American Concrete Institute Committee 209. Prediction of creep, shrinkage and temperature effects in concrete structures [M]. Farmington Hills, US: ACI, 2005.

共引文献8

同被引文献92

引证文献8

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部