期刊文献+

微生物胞外聚合物特征组分影响黄铁矿分解作用的实验研究 被引量:2

The effects of the typical components of extracellular polymeric substances(EPS) of microorganism on the bio-decomposition of pyrite
下载PDF
导出
摘要 为探讨微生物胞外聚合物(EPS)对矿物分解的影响,以查明微生物-矿物直接接触形式对硫化物分解的显著促进作用,分别采用葡萄糖、精氨酸、葡糖醛酸、柠檬酸等EPS的特征组分,配制浓度相同的系列反应溶液,与黄铁矿颗粒持续反应29d(30℃)。通过检测反应溶液中的全铁含量来近似表征黄铁矿的溶解速率,并利用扫描电子显微镜观察黄铁矿溶解前后的形貌变化。实验发现,在微生物-矿物相互作用的过程中,EPS中的部分组分,如葡糖醛酸、柠檬酸,可能起着关键的作用,而分子量相对较大的糖类和缺少化学活动性基团的葡萄糖、精氨酸等则会降低黄铁矿分解的速率,可能与其在黄铁矿表面的覆盖有关。 Extracellular polymeric substances (EPS) seem to play an important role in bioleaching. Generally,EPS consist of neutral sugars,lipids,a small amount of amino acid and some metabolites such as organic acid. In this paper,glucose,arginine,glucuronic acid and citric acid were used to study the effects of different components of EPS on the leaching of pyrite and indicate the facilitation of the direct contact between microbes and minerals on bioleaching. The iron contents of the experimental solution were measured in order to determine the dissolving rate of pyrite,and scanning electronic microscopy was employed to observe the changes of the surface characteristics of the pyrite. Some preliminary data obtained indicate that some kinds of components of EPS,such as glucuronic acid and citric acid,can promote the dissolution,while sugars and arginine suppress the decomposition,which may be attributed to their surface coating on the pyrite surfaces.
出处 《岩石矿物学杂志》 CAS CSCD 北大核心 2009年第6期553-558,共6页 Acta Petrologica et Mineralogica
基金 国家重点基础研究发展计划资助项目(2007CB815603) 国家自然科学基金资助项目(40573001)
关键词 黄铁矿 胞外聚合物 微生物分解 pyrite EPS bio-decomposition
  • 相关文献

参考文献4

二级参考文献66

共引文献77

同被引文献36

  • 1邱立友.细菌藻酸盐研究进展[J].微生物学通报,1994,21(6):360-363. 被引量:2
  • 2田余祥,于秀萍,崔秀云.基因表达的一种定量研究方法——高效毛细管电泳法[J].大连医科大学学报,1997,19(1):5-7. 被引量:1
  • 3RAWLINGS D E. Heavy metal mining using microbes[J]. Annual Review of Microbiology, 2002, 56(1): 65-91.
  • 4SCHIPPERS A, HEDRICH S, VASTERS J, DROBE M, SAND W, WILLSCHER S. Biomining: Metal recovery from ores with microgaisras[C]// Ad-ances in Biochemical Engineering/ Biotechnology. Berlin, Germany: Springer, 2013: 1-47.
  • 5ZENG Wei-min, QIU Guan-zhou, ZHOU Hong-bo, LIU Xue-duan, CHEN Miao, CHAO Wei-liang, ZHANG Cheng-gui,PENG Juan-hua. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J]. Hydrometallurgy, 2010, 100(3/4): 177-180.
  • 6RYDER C, BYRD M, WOZNIAK D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current Opinion in Microbiology, 2007, 10(6): 644-648.
  • 7FLEMMING H C, W1NGENDER J. The biofilm matrix[J]. Nature Review of Microbiology, 2010, 8(9): 623-633.
  • 8SAND W, GEHRKE T. Extraeellular polymeric substances mediate bioleaching/bioeorrosion via interfacial processes involving iron([II) ions and acidopbilic bacteria[J]. Research in Microbiology, 2006, 157(1): 49-56.
  • 9GORIN P A J, SPENCER J F T. Exocellular alginic acid from Azotobacter vinelandii[J]. Canadian Journal of Chemistry, 1966, 44: 993-998.
  • 10LINKER A, JONES R S. A new polysaccharide resembling alginic acid isolated from pseudomonads[J]. The Journal of Biological Chemistry, 1966, 24(16): 3845-3851.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部