期刊文献+

拉曼光谱预处理中几种小波去噪方法的分析 被引量:7

Denoising of raman spectra based on wavelet transform
下载PDF
导出
摘要 拉曼光谱分析中,噪声的存在常影响分析的准确度和检测限.以钙长石的拉曼光谱为研究对象,探讨小波变换在拉曼光谱信号去噪方面的应用,分别采用移动窗口最小二乘多项式平滑、移动窗口中位数平滑、非线性小波软硬阈值法和小波变换模极大值法对加噪后的拉曼光谱进行去噪并对去噪效果进行比较.结果表明,小波变换模极大值光谱去噪法得到了较高的信噪比,小波软硬阈值法次之,其他2种方法去噪效果较差.小波变换模极大值法能够有效去除光谱噪声,并很好地保留了光谱信号特征,为拉曼光谱的校正模型的建立奠定了良好的基础. During the spectrum analysis process, noise usually influences the analytical accuracy and the detection limit. Taking the Raman spectra of anorthite as the research object, the application of wavelet denoising to Raman spectra was discussed. Savitzky-Golay smoothing, moving window median smoothing, the nonlinear wavelet soft and hard threshold denoising method and wavelet transform modulus maxima method were applied respectively to pure Raman spectra with added noise, the performance of these wavelet denoising methods was compared. The results show that the wavelet transform modulus maxima method obtained a high signal to noise ratio, followed by the soft and hard threshold wavelet method. The other two methods were less effective. Wavelet transform modulus maxima method is able to eliminate spectroscopic noises and interferences while reserving major information. It contributes to the foundation of Raman spectra correction model.
出处 《应用科技》 CAS 2009年第11期27-31,共5页 Applied Science and Technology
基金 国家"863"计划资助项目(2006AA09A205)
关键词 拉曼光谱 小波变换 去噪 模极大值 Raman spectra wavelet transform denoising modulus maxima
  • 相关文献

参考文献7

  • 1DONOHO D L, JOHNSTON I M. Ideal spatial adaptation via wavelet shrinkage [ J ]. Biometrika, 1994,81 ( 12 ) : 425- 455.
  • 2DONOHN D L. De-noising by soft-thresholding[ J]. IEEE Trans on IT, 1995,41 (3) :613-627.
  • 3DINIHO D L, JOHNSTON I M. Adapting to unknown smoothness via wavelet shrinkage [ J ]. Journal of American Stat Assoc, 1955,12 ( 90 ) : 1200-1224.
  • 4郭晓霞 杨慧中.小波去噪中软硬阈值的一种改良折衷法.光谱学与光谱分析,2006,26(10):1838-1841.
  • 5李洋,钟诗胜.多分辨小波过程神经网络及其应用研究[J].智能系统学报,2008,3(3):211-215. 被引量:6
  • 6ALSBERG B K, WOODWARD A M, WINSON M K, et al. Wavelet denoising of infrared spectra [ J ]. Analyst, 1997, 122 ( 7 ) :645-652.
  • 7郝勇,陈斌,朱锐.近红外光谱预处理中几种小波消噪方法的分析[J].光谱学与光谱分析,2006,26(10):1838-1841. 被引量:34

二级参考文献9

  • 1吕瑞兰,吴铁军,于玲.采用不同小波母函数的阈值去噪方法性能分析[J].光谱学与光谱分析,2004,24(7):826-829. 被引量:35
  • 2郑咏梅,张铁强,张军,陈星旦,申铉国.平滑、导数、基线校正对近红外光谱PLS定量分析的影响研究[J].光谱学与光谱分析,2004,24(12):1546-1548. 被引量:51
  • 3[1]ZHANG Qinghua,BENVENISTE A.Wavelet networks[J].IEEE Transactions on Neural Networks,1992,3(6):889-898.
  • 4[2]ZHANG Qinghua.Using wavelet network in nonparametric estimation[J].IEEE Transactions on Neural Networks,1997,2(8):227-236.
  • 5[3]ZHANG J,WALTER G,MIAO Y.Wavelet neural networks for function learning[J].IEEE Transactions on Signal Processing,1995,43(6):1485-1497.
  • 6Stephane Mallat.A Wavelet Tour of Signal Processing(信号处理的小波导引).Beijing:China Machine Press(北京:机械工业出版社),2002.9.
  • 7Donoho D L.IEEE Transaction on Information Theory,1995,41(3):613.
  • 8Stephane Mallat,Wen Liang.IEEE Transaction on Information Theory,1992,38(2):617.
  • 9Kicey C J,Lennard C J.Fourier Analysis and Appl,1997,3(1):63.

共引文献38

同被引文献82

引证文献7

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部