摘要
The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas.In this study,the slot gating system is employed to improve mold filling behavior and therefore,to improve the quality of aluminum castings produced in permanent molds.An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed.Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems.The investigation discovers that there are many influencing factors on the mold filling process.This paper focuses its research on some of the factors,such as the dimensions of the vertical riser and slot thickness,as well as roughness of the coating layer.The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system.A bigger vertical riser,proper slot thickness and rougher coating can provide not only a better mold filling pattern,but also hot melt into the top of the cavity.A proper temperature gradient is obtainable,higher at the bottom and lower at the top of the casting cavity,which is in favor of feeding during casting solidification.
The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. In this study, the slot gating system is employed to improve mold filling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum flowing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the flow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many influencing factors on the mold filling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fill into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold filling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidification.