摘要
提出一种基于最小二乘支持向量机(LS-SVM)的温度传感器非线性关系拟合模型,并根据温度传感器的输入输出特性给出两种方案对参考端温度进行补偿.建立了LS-SVM回归模型,利用LS-SVM超强的学习能力对温度与电势间的非线性关系进行精确拟合.两种方案均可对参考端温度进行有效补偿,其中方案2可根据参考端温度、传感器实测电势对实际温度直接拟合,简化了补偿过程,提高了识别精度.实验表明,LS-SVM回归法及文中所提出的补偿方案能很好地逼近实际温度,提高测量精度.
This paper proposes a model to fit the non-linear relation of temperature sensor based on least square support vector machine (LS-SVM), and presents two design schemes to compensate temperature of reference point according to the sensor's input/output characteristics. An LS-SVM regression model is set up, which takes advantage of the super learning capacity of LS-SVM to precisely fit the non-linear relation between temperature and voltage. Both schemes can effectively compensate reference point temperature. The second scheme can directly fit the actual temperature in accordance with the reference temperature and the actual measuring voltage of the sensor, simplifying the compensation and enhancing recognition precision. Experiments show that the LS-SVM regressing method and the proposed compensation method can fit the actual temperature and enhance measuring precision.
出处
《应用科学学报》
CAS
CSCD
北大核心
2009年第6期616-622,共7页
Journal of Applied Sciences
基金
国家自然科学基金(No.70672096)资助项目
关键词
温度传感器
非线性关系
拟合
温度补偿
最小二乘支持向量机
temperature sensor
non-linear relationship
fitting
temperature compensation
least square support vector machine