期刊文献+

基于支持向量机的分类预测算法研究 被引量:1

Research Classification Algorithm Based on Support Vector Machine
下载PDF
导出
摘要 分类预测是数据挖掘、机器学习和模式识别等很多领域共同关注的问题,已经存在了许多有效的分类算法,但这些算法还不能解决所有的问题。支持向量机作为一种新的分类预测工具,能根据有限样本信息在模型的复杂性和学习能力间取得平衡,并能获得更好的泛化能力。SMO算法是支持向量机中使用最多的算法,它体现了支持向量机的优点,同时也能处理大规模训练集。 Classification is a common concern in many areas, such as data mining, machine learning, pattern recogmnon, etc. There have been many effective classification algorithms. However, these algorithms still can not solve all the problems. Support Vector Machine achieves a balance between complexity of the model and ability to learn according to finite sample information. And it can get better generalization ability. SMO algorithm is most commonly used algorithm in SVM. It embodies the advantages of SVM. It is also capable of handling large-scale training set at the same time.
作者 陈凤娟
出处 《计算机与网络》 2009年第19期64-67,共4页 Computer & Network
基金 辽宁对外经贸学院校级课题(09XJLXQN001)
关键词 分类 支持向量机 序列最小优化算法 classification Support Vector Machine SMO
  • 相关文献

参考文献5

二级参考文献19

  • 1杨淑莹.模式识别与智能计算[M].北京:电子工业出版社,2008.
  • 2Vapnik V.Statictical learning theory[M].New York:Wiley,1998:11-23.
  • 3Suykens J,Vandewa Lie J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 4Osuna E,Freuud R,Girosi F.Training support vector machines:An application to face detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1997:130-136.
  • 5Mukerjee S,Osuna E,Girosi F.Nonlinear prediction of chaotic time series using a support vector machine[C]//Principle J,Giles L,Morgnn N.Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Precessing.[S.l.]:IEEE Press,1997:1125-1132.
  • 6Keerthi S,Shevade S,Bhattcharyya C,et al.A fast iterative nearest point algorithm for support vector machine classifier design[J].IEEE Trans on Neural Networks,2000,11 (1):124-136.
  • 7Frieb T,Chistianini N,Campbell C.The kernel adatron algorithm:A fast and simple learning procedure for support vector machines[C]//Shavlik J.Proceedings of the The 15th International Conference of Machine Learning.CA:Morgan Kanfmann Publishers,1998:188-196.
  • 8Joachims T.Make large-scale support vector machine learning Wastical[C]//Advances in Kernel Methods:Support Vector Machines.Cambridge,MA:MIT Press,1998-11:169-184.
  • 9Luenberger D G.Linear and nonlinear programming[M].NY:Addi-son-Wesley,1986.
  • 10Mangasarian O,Musicant R.Successive overrnlaxation for support vector machines[J].IEEE Trans on Neural networks,1999:1032-1037.

共引文献95

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部