期刊文献+

稻瘟病菌致病性增强突变体B11的基因分析 被引量:6

Analysis on Gene Locus of Magnaporthe oryzae B11,a Pathogenicity-Enhanced Mutant
下载PDF
导出
摘要 在农杆菌介导转化(AtMT)的稻瘟病菌突变体库中,筛选到一个菌丝生长增快,对大麦致病性增强的突变体B11。Southern杂交分析表明B11中T-DNA为单拷贝插入。通过TAIL-PCR克隆插入位点侧翼序列,序列测定与比对分析显示T-DNA位于假想基因MG01679的编码区内。利用PCR的方法,克隆基因的DNA和cDNA序列。该基因开放阅读框包括1个内含子和2个外显子,编码序列的长度为696 bp,编码231个氨基酸的多肽,编码产物属于ThiJ/PfpⅠ蛋白家族。因此,将该基因命名为MgThiJ1。MgThiJ1蛋白序列与尖胞镰刀菌假想蛋白FOXG_09029有57%的同源性,与禾谷镰刀菌假想蛋白FGSG_08979有54%的同源性。MgThiJ1基因可能为致病过程的负调控因子,其具体作用机制有待进一步研究。 A Magnaporthe oryzae mutant Bll was obtained by Agrobacterium-mediated transformation (AtMT) method, which enhanced the pathogenicity to barley. Southern blotting analysis indicated that T-DNA insert in the Bll genome was single copy. TAIL-PCR and sequence alignment analysis indicated that the T-DNA insertion broke the putative gene locus MG01679. By using PCR-based method, the DNA and cDNA of the gene locus were cloned and sequenced. The open reading frame of the gene includes one intron and two exons. And the coding sequence is 696 bp long and encodes a 231 amino acid peptide. Protein similarity analysis indicated that the product of the gene belongs to the ThiJ/Pfp I protein family, and the gene was thus assigned MgThiJ1. MgThiJ1 shows 57~ similarity to FOXG_09029 from Fusarium oxysporum, and 540/00 similarity to FGSG_08979 from Fusarium graminearum in protein sequence. MgThiJ1 gene may be a negative regulator to vegetative growth and pathogenicity in filamentous fungi, and its specific mechanism need to be studied further.
出处 《中国水稻科学》 CAS CSCD 北大核心 2009年第6期611-615,共5页 Chinese Journal of Rice Science
基金 浙江省自然科学基金资助项目(Y306638) 浙江省重大科技攻关计划资助项目(2007C12905) 国家自然科学基金资助项目(30900933 30970082)
关键词 稻瘟病菌 突变体 致病性 基因 基因功能 蛋白序列 Magnaporthe oryzae mutant pathogenicity gene gene function protein sequence
  • 相关文献

参考文献20

  • 1Urban M, Bhargava T, Hamer J E. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBOJ, 1999, 18(3) : 512-521.
  • 2Sweigard J A, Carroll A M, Farrall L, et al. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. MolPlant Microbe Interact, 1998, 11(5): 404-412.
  • 3Hamer J E, Valent B, Chumley F G. Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics, 1989, 122(2): 351-361.
  • 4Xu J R, Sweigard J A, Hamer J E, et al. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant Microbe Interact, 1997, 10(2): 187-194.
  • 5Balhadere P V, Foster A J, Talbot N J. Identification of pathogenicity mutants of the rice blast [ungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact, 1999, 12(2): 129-142.
  • 6Sweigard J A, Carroll A M, Valent B, et al. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact, 1998, 11(5) : 404-412.
  • 7Mullins E D, Kang S. Transformation: A tool for studying fungal pathogens of plants. Cell Mol Life Sci, 2001, 58 (14) : 2043-2052.
  • 8Talbot N J, Ebbole D J, Hamer J E, et al. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 1993, 5: 1575-1590.
  • 9Sambrook J, Fritsch E F, Maniatis T, et al. Molecular Cloning: A Laboratory Manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989:43 45.
  • 10Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genornics, 1995, 25(3): 674-681.

二级参考文献34

  • 1[1]Adachi K, Hamer JE, 1998. Divergent cAMP signal Pathway regulate growth and pathogenesis in the rice blast fungus, Magnaporthe grisea. Plant Cell, 10: 1361~1373
  • 2[2]Balhadere P V, Talbot NJ, 2001. PDE1 encodes a P-ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 13: 1987~2004.
  • 3[3]Balhadere P V, Talbot N J, 2000. Fungal pathogenicity-establishing infection. In: Dickson M(ed.) Molecular Plant Pathology (Annual Plant Review,vol.4) : 1~25
  • 4[4]Choi W, Dean R A, 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell, 9: 1973~1983
  • 5[5]Clergeot P-H, Gourgues M, Cots J et al., 2001.PLS1, a gene encobing a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA, 98: 6963~6968
  • 6[6]Davis D J, Burlak C, Money N P, 2000. Biochemical and biomechanical aspects of appressorium development of Magnaporthe grisea. In: Talbot N J(ed.)Progress in Rice Blast Research. Springer-Verlag, Berlin. 248~256
  • 7[7]DeZwaan T M, Carroll A M, Valent B, 1999. Magnaporthe grisea Pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell , 11: 2013~2030
  • 8[8]Gilbert R D, Johnson A M, Dean R A, 1996. Chemical Signals responsible for appressorium formation in the rice blast fungus. Physiol Mol Plant Pathol, 48: 335~346
  • 9[9]Hamer J E, Farrall L, Orbach M G et al., 1989. Host speciese-specific conservation of a family of repeeated DNA sepuences in the genome of a fungal plant pathogene. Proc Natl Acad Sci USA, 86: 9981~9985
  • 10[10]Hamer J E, Howard R J, Chumley F G et al., 1988. A mechanism for surface attachment of spores of a plant pathogenic fungus. Science, 239: 288~290

共引文献10

同被引文献98

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部