期刊文献+

星空背景下的运动点目标轨迹提取 被引量:8

Trajectory extraction algorithm of moving point targets in star background
原文传递
导出
摘要 针对星空图像中运动点目标轨迹难于提取的问题,提出了有限帧最小二乘轨迹关联算法。采用相邻帧差分、自适应阈值分割、连通域处理和质心计算等步骤实现了疑似目标的定位。根据星点目标运动轨迹近似为直线、运动的连续性和相关性等特点,利用有限帧最小二乘线性拟合预测目标位置,以预测位置为中心开搜索窗,关联匹配真实目标,并通过置信度检验确认并提取目标运动轨迹。整套算法简单,易于实现,通过实拍星图实验,验证了该算法效果好,实时性强。 Based on the analysis of the characteristics of star image and point target, an investigation about the algorithm for trajectory extraction of moving point targets in sequence star images is carried out. A track-association algorithm based on the limited frames Least Squares method is put forward. In the single frame processing, after these steps of image difference of related frames, auto threshold segmentation, calculating 8-directions-connected fields, centroid method of gray-scale weighted etc are carried out in turn, doubted targets are rapidly located. In the sequence image frames processing, according to the supposition that target moving trajectory is approximate beeline, continuity and relativity of movement, target position are predicted by Least Squares method. The real targets are associated and matched in the searching windows which midpoints are located on the predicted positions. The real target moving trajectory is extracted by doubting grade checkout. The complete set of algorithms are used to process sequence star images that are focused in the real condition, and obtain satisfied results.
出处 《光学技术》 CAS CSCD 北大核心 2009年第6期810-814,818,共6页 Optical Technique
基金 国家863高技术研究发展计划资助项目(2007AA1132)
关键词 图像处理 星空图像 运动点目标 最小二乘 轨迹关联 image processing star image moving point target least squares track-association
  • 相关文献

参考文献10

二级参考文献49

  • 1李颖,张占月,方秀花.空间目标监视系统发展现状及展望[J].国际太空,2004(6):28-32. 被引量:29
  • 2李学夔,郝志航,李杰,周国辉.星敏感器的星点定位方法研究[J].电子器件,2004,27(4):571-574. 被引量:34
  • 3赵剡,张怡.星图识别质心提取算法研究[J].空间电子技术,2004,1(4):5-8. 被引量:14
  • 4田金文,欧阳桦,郑胜,张钧.一种星图中星的提取方法[J].华中科技大学学报(自然科学版),2005,33(4):38-40. 被引量:25
  • 5王兆魁,张育林.一种CCD星图星点快速定位算法[J].空间科学学报,2006,26(3):209-214. 被引量:29
  • 6[3]Zhang Bing, Lu Huanzhang. The predicting and matching detection algorithm of moving point target in image sequences. In: Proc. of the IEEE International Conference on Neural Networks & Signal Processing, Nanjing, China, 2003: 1151-1154.
  • 7[4]Bar-Shalom Y. Multi-target Multi-sensor Tracking: Advanced Applications. Norwood, MA, USA:Artech House Inc., 1990: Chapter 4.
  • 8[5]Arnold J, Pastenack H. Detection and tracking of low-observable targets through dynamic programming. In: Proc. of the SPIE Conference on Signal and Data Processing of Small Targets,Orlando, Florida, USA: SPIE, 1990, 1305: 207-217.
  • 9[6]Tonissen S M, Evans R J. Performance of dynamic programming techniques for track before detect. IEEE Trans. on AES, 1996, 32(4): 1440-1450.
  • 10[7]Johnston L A, Krishnamurthy V. Performance analysis of a dynamic programming track before detect algorithm. IEEE Trans. on AES, 2002, 38(1): 228-242.

共引文献221

同被引文献83

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部