期刊文献+

基于均值漂移粒子滤波的目标跟踪算法研究 被引量:1

Mean Shift Paticle Filter Based Methods for Target Tracking
下载PDF
导出
摘要 针对粒子滤波计算量大的问题,将视觉跟踪领域的均值漂移算法(Mean Shift)与粒子滤波(PF)算法相结合,该算法利用均值漂移算法在重采样之后将粒子收敛到靠近目标真实状态的区域内,改善了传统粒子滤波器的退化现象,减少了算法的运行时间,通过被动跟踪仿真实例,同时使用均值漂移粒子滤波与传统粒子滤波进行跟踪仿真,分析了轨迹跟踪性能,利用均方根误差比较了误差性能。仿真结果表明,Mean Shift PF具有更高的跟踪精度,并且运行时间显著减少。 To reduce the computation burden of particle filter,the Mean Shift and particle filter were combined.The mean shift technique was used to estimates the gradient of the approximated density and moved particles toward the modes of the posterior,leading to a more effective allocation of particles thereupon fewer particles were needed and the computational demand was reduced.The performance were analyzed by comparison with the PF.Simulation results show that MS-PF algorithm can reduce computation burden.Further more, the track accuracy of the algorithm can also be effectively improved.
出处 《舰船电子工程》 2009年第11期63-65,共3页 Ship Electronic Engineering
基金 国家自然科学基金项目(编号:60541001)资助
关键词 均值漂移 粒子滤波 被动跟踪 mean shift particle filter passive tracking
  • 相关文献

参考文献6

  • 1Bar-Shalom Y, Li X R. Estimation and Tracking.. Principles, Techniques and Software [M]. Artech House, Boston, 1993.
  • 2Gordon N J, Salmond D J, Smith A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation [J]. IEE Proceedings-F, 1993,140(2) : 107-113.
  • 3Arulampalam S, Maskell S. A tutorial on particle filters for no-line/no-Gaussian Bayesian tracking[J]. IEEE TrarLsactions of Signal Processing, 2002, 50(2):174-188.
  • 4Comaniciu D, Ramesh V. Mean Shift and Optimal Prediction for Efficient Object Tracking[C]. Proc of the IEEE International Conference on Image Processing, Vancouver, Canada, 2000,3 :70-73.
  • 5P. Meer. Robust techniques for computer vision, In: G. Medioni and S. B. Kang (Eds.), Emerging Topics in Computer Vision, Prentice Hall, 2004.
  • 6Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift[C]. Proc of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, 2000, 2:142-149.

同被引文献13

  • 1康健,芮国胜.粒子滤波算法的关键技术应用[J].火力与指挥控制,2007,32(4):53-55. 被引量:8
  • 2E J Cands,M B Wakin. An introduction to compressive sam- piing[ J]. IEEE Signal Processing Magazine, 2008,25 (2) : 21 - 30.
  • 3D L Donoho. Compressed sensing [ J ]. IEEE Transactions on Information Theory,2006,52(4):1289- 1306.
  • 4R G Baraniuk. Compressive sensing[J]. IEEE. Signal Processing Magazine, 2007,24(4) : 118 - 121.
  • 5D Wei, O Milenkovic. Subspace pursuit for compressive sensing signal reconslmction [ J ]. IEEE Transactions on Information Theory, 2009,55 (5) : 2230 - 2249.
  • 6D Needell, J A Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[ J ]. Communications of the ACM,2010,53(12) :93 - 100.
  • 7N Vaswani. Kalman filtered compressed sensing[ A],15th IEEE international Conference on Image Processing[ C]. San Diego, California: IEEE, 2008. 893 - 896.
  • 8W B Tian, G S Rui. Reconstruction method for unknown spar- sity noisy signals based on kalman filtering matching pursuit[A]. Proceedings of 2012 IEEE 14th International Conference on Communication Technology ( ICCT2012 ) [ C ]. Chengdu, China: IEEE,2012,1323 - 1327.
  • 9H Huang,A Makur.Backlracking-based matching pursuit method for sparse signal reconsaaacfion[J]. Signal Processing Let- ters,2011,18(7) :391 - 394.
  • 10L Zuo, R Niu, P K Varshney. Conditional posterior Cram&- Rao lower bounds for nonlinear sequential Bayesian estimation [ J]. IEEE Transactions on Signal Processing, 2011,59 ( 1 ) : 1 - 14.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部