期刊文献+

BP神经网络算法的改进及其在手写体汉字识别中的应用 被引量:5

The Improves on the Standard BP Algorithm and Its Use in the Field of the Off-Line Handwritten Chinese Character Recognition
下载PDF
导出
摘要 分析BP算法的基本原理,指出BP算法具有收敛速度慢、易陷入局部极小点等缺陷以及这些缺陷产生的根源.针对这些缺陷,通过在标准BP算法中引入变步长法、加动量项法等几种方法来优化BP算法.应用实例利用MATLAB软件对标准BP算法及其改进的算法进行语言编程、仿真.实验结果表明,这些方法有效地提高了BP算法的收敛性,避免陷入局部最小点.同时,将改进的BP神经网络算法应用于脱机手写体汉字识别系统的实现,实验表明系统较好地回避了汉字结构复杂、变形难以预测等问题,提高了识别率. Basic principle of BP algorithm is analyzed firstly. Then some defects such as slow convergence rate and getting into local minimum in BP Algorithm are pointed out, and the root of the defects is presented. Finally, in view of these limitations, several methods such as genetic algo rithm and simulated annealing algorithm etc. are led to optimize BP algorithm. At the same time given to show the differences between the standard BP algorithm aml the improved algorithm using MATLAB. Experiment results show that these methods increase effi-ciently the conver- gence performance of BP algorithm and avoid local minimum. A technological research on recognition of handwrit- ten Chinese characters based on these improved BP algorithms is summarized. The Chinese character recognition system is realized,as a result of the use of improved BP networks. Experimental results demonstrate that this system based on the improved BP algorithms can successfully overcome obstacles out of the complexity of the Chinese characters' structures,and of difficulties to forsee written forms' changes.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第5期598-603,共6页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家"863"计划(2007ADA299)资助项目
关键词 BP神经网络 改进BP算法 脱机手写体汉字识别 学习率 back-propagation neural network improved BP algorithm off-line Chinese characters recognition learning rate
  • 相关文献

参考文献12

二级参考文献19

共引文献289

同被引文献40

  • 1张芳芳,贺娟,李明军.基于导数优化的BP学习算法的研究综述[J].计算机应用研究,2009,26(3):809-813. 被引量:7
  • 2林椹尠,宋国乡,薛文.图像的几种小波去噪方法的比较与改进[J].西安电子科技大学学报,2004,31(4):626-629. 被引量:22
  • 3万来毅,陈建勋,王卫平,李俊.基于BP神经网络的图像识别研究[J].武汉科技大学学报,2006,29(3):277-279. 被引量:13
  • 4李来强,王树林,赵兵涛.BP神经网络的LM算法及其对颗粒碰撞振动阻尼的预测[J].上海理工大学学报,2006,28(4):331-333. 被引量:13
  • 5SAXEN H,PETTERSSON F. A data mining method applied to a metallurgical process[C]//Proeeedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining. Honolulu,HI :IEEE,2007:368-375.
  • 6MOODY J ,DARKEN C J. Fast learning in networks of locally turned processing units[J]. Neural Computation, 1989, 1(2):281-294.
  • 7CHEN S,COWAN C F N,GRANT P M. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks,1991,2(2) :302-309.
  • 8Wilamowski B M, Chen Yixin, Malinowski A. Efficient algorithm for training neural networks with one hidden layer. International Joint Conference on Neural Networks, Washington, D. C, July10-16, 1999 : 1725-1728.
  • 9Wilamowski B, Iplikci S, Kayank O, et al. An algorithm for fast convergence training neural networks. International Joint Conference on Neural Networks, Washington, D. C, Julyl5-19,2001 : 1778-1782.
  • 10S C Ng, S H Leung, A Luk .Convergence of the generalized back-propagation algorithm with constant learning rates[J]. Neural Networks Proceedings 1998:1090-1094.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部