期刊文献+

伪抛物型积分微分方程的混合有限元误差估计 被引量:2

Error Estimates for Mixed Finite Element Methods for Pseudo-parabolic Intergo-differential Equations
下载PDF
导出
摘要 基于Raviart-Thomas空间,本文对伪抛物型积分微分方程初边值问题提出了混合有限元方法。与通常的有限元方法相比,该方法可以同时高精度逼近未知函数及未知函数的梯度。通过引入广义混合椭圆投影,证明了其存在唯一性,并得到了其一系列性质,利用其性质给出了平方模范数下的最优误差估计;利用广义混合椭圆投影和正则Green函数得到了最大模范数下的拟最优误差估计。 In this paper, a mixed finite element method is proposed to solve the initial-boundary value problem of pseudo-parabolic integro-differential equations. Compared with the usual finite element method, the unknown scalar and the adjoint vector function are approximated optimally and simultaneously. By introducing the projection of generalized mixed element, the existence and uniqueness of projection and some important properties of the projection are proved. By using its properties, the optimal order error estimates in square norm are derived; By using the projection of generalized mixed element and the regular Green function, quasi-optimal order error estimates in maximal norm are finally obtained .
作者 车海涛
出处 《工程数学学报》 CSCD 北大核心 2009年第6期1033-1038,共6页 Chinese Journal of Engineering Mathematics
基金 潍坊学院自然科学基金(2008Z22)
关键词 伪抛物型积分微分方程 混合有限元方法 误差估计 pseudo-parabolic intergo-differential equation mixed finite element method error estimate
  • 相关文献

参考文献5

  • 1Jiang Z W. L^∞(L^2) and L^∞(L^∞) Error estimates for mixed methods for integro-differential equations of parabolic type[J]. Math Model Numer Anal, 1999, 33:531-546.
  • 2Maria Noelle Le Roux, Vidar Thomee. Numerical solution of semilinear integro-differentiM equations of parabolic type with nonsmooth data[J]. SIAM J Numer Anal, 1989, 26:1291-1309.
  • 3Mliner F A, Park E J. Mixed finite element method for strongly nonlinear second order elliptic problem[J]. Math Com, 1995, 64:973-988.
  • 4Raviart P A, Thomas J M. A mixed finite element method for second order elliptic problem[C]// Lecture Notes in Math 606, Brelin: Springer, 1977:292-315.
  • 5Greenwell-Yanik E, Fairweather G. Finite element methods for parabolic and hyperbolic partial integro- differential equations[J]. Nonlinear Anual, 1988, 12:785-809.

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部