期刊文献+

对称矩阵反问题的总体最小二乘解

The Total Least Squares Solution for the Inverse Problems of Symmetric Matrices
下载PDF
导出
摘要 最小二乘法是近年来求解对称矩阵反问题的一种常用方法,但因系数矩阵常常存在误差,方法本身具有很大的局限性。鉴于此,本文提出并讨论了对称矩阵反问题的总体最小二乘解,给出了解的一般表达式;证明了最佳逼近问题解的存在唯一性,给出了其具体表达式及数值算法,并将数值结果应用于求解对称矩阵反问题。 Least squares have been widely used in the inverse problems of symmetric matrices. However, errors always occur in the relevant coefficient matrix. This makes the approach limited. In order to overcome this shortcoming, the total least squares solution of inverse problems of symmetric matrices are proposed. The general form of the solution is given. The existence and expression of the optimal approximation solution are presented, and a numerical algorithm is derived. These results are finally applied to solve the inverse problem of symmetric matrices.
出处 《工程数学学报》 CSCD 北大核心 2009年第6期1090-1096,共7页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(60673196) 国家自然科学青年基金(60704015)
关键词 对称矩阵 反问题 总体最小二乘解 奇异值分解 RICCATI方程 symmetric matrix inverse problem total least squares solution singular value decomposition Riccati equation
  • 相关文献

参考文献6

  • 1戴华.用振动试验最优校正刚度、柔度和质量矩阵.振动工程学报,1988,1(2):18-27.
  • 2Golub G H, Van Loan C F. An analysis of the total least squares problem[J]. SIAM Journal of Numerical Analysis, 1980, 17(6): 883-893.
  • 3Van Huffel S, Vandewalle J. Algebraic connections between the least squares and total least squares problems[J]. Numerical Mathematics, 1989, 55(4): 431-449.
  • 4Wei M S. Algebraic relations between the total least squares and least squares problems with more than one solution[J]. Numerical Mathematics, 1992, 62(1): 123-148.
  • 5Lancaster P, Rodman L. Algebraic Riccati Equations[M]. Oxford: Oxford University Press, 1995.
  • 6Fan K, Hoffman A J. Some metric inequalities in the space of matrices[C]// Proceedings of the American Mathematical Society, 1955, 6:111-116.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部