期刊文献+

广义非线性集值混合拟变分不等式的扰动迭代算法

The Perturbed Iterative Algorithm for Generalized Nonlinear Set-valued Mixed Quasi-variational Inequalities
下载PDF
导出
摘要 本文对一类广义非线性集值混合拟变分不等式进行了研究。首先,利用刘理蔚与李育强的结果,可知黄南京的结果中出现的集值映像实际上是单值的。其次,利用Siddiqi和Ansari的方法以及不动点理论,我们证明了这类混合拟变分不等式解的存在性,并给出了一个解这类混合拟变分不等式的新的扰动迭代算法。最后,讨论了这个新的扰动迭代算法的收敛判据。 A class of generalized nonlinear set-valued mixed quasi-variational inequalities is studied in this paper. Firstly, it is shown that the set-valued mapping in the result of Huang is actually single-valued by virtue of the result of Liu and Li. Secondly, the existence of solution for this class of mixed quasi-variational inequalities is proved by the method of Siddiqi and Ansaxi, and a new perturbed iterative algorithm for this class of mixed quasi-variational inequalities is designed. Finally, the convergence criteria for this new perturbed iterative algorithm is discussed.
出处 《工程数学学报》 CSCD 北大核心 2009年第6期1103-1111,共9页 Chinese Journal of Engineering Mathematics
基金 上海高校选拔培养优秀青年教师科研专项基金
关键词 集值混合拟变分不等式 扰动迭代算法 极大单调映象 不动点理论 set-valued mixed quasi-variational inequality perturbed iterative algorithm maximal monotone mapping fixed point theory
  • 相关文献

参考文献8

  • 1Kazmi K R. Mann and Ishikawa type perturbed iterative algorithms for generalized quasi-variational inclusions[J]. Journal of Mathematical Analysis and Applications, 1997, 209:572-584.
  • 2Huang N J. Generalized nonlinear mixed quasi-variational inequalities[J]. Computers and Mathematics with Applications, 2000, 10:205-215.
  • 3Liu L W, Li Y Q. On generalized set valued variational inclusions[J]. Journal of Mathematical Analysis and Applications, 2001, 261:231-240.
  • 4Chang S S. Variational Inequality and Complementarity Problem Theory with Applications[M]. Shanghai: Shanghai Scientfic and Tech, 1991.
  • 5Minty G J. On the monotonicity of the gradient of a convex function[J]. Pacific Journal of Mathematics, 1964, 14:243-247.
  • 6曾六川.Lipschitz强增生算子方程解得Ishikawa迭代逼近.数学杂志,2003,23:71-77.
  • 7Siddiqi A H, Ansari Q H. An iterative method for generalized variational inequalities[J]. Mathematica Japonica, 1989, 34:475-481.
  • 8Nadler S B. Multi-valued conaction mapping[J]. Pacific Journal of Mathematics, 1969, 30:475-488.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部