期刊文献+

土壤溶质迁移至地表径流过程的室内模拟试验 被引量:8

Laboratory simulation experiment on chemical transport from soil to surface runoff
下载PDF
导出
摘要 关于土壤溶质迁移到地表径流,现有研究大多是概念性的认识,对迁移过程中各个部分的定量研究却很少。该文为了量化研究土壤溶质迁移流失过程及其作用机理,通过设计2种水文条件即土壤水分饱和和土壤渗流条件,其中土壤渗流条件设置了2种水头(5cm,10cm),采用人工模拟5组不同地表径流流速,分别研究土壤溶质迁移到地表径流过程中4种途径:土壤侵蚀、伯努利效应、扩散和对流。试验结果表明了伯努利效应导致土壤溶质迁移量增加;特别是在土壤水分饱和条件下,当地表径流流速从55mL/s升到200mL/s时,伯努利效应引起的土壤溶质流失通量占总流失通量的比例从14%升到53%,在土壤水分饱和条件下,混合层深度小于5mm;但是在土壤渗流条件下,混合层深度随着水头的高低和径流流速的大小而变化。土壤溶质迁移过程同地表径流流速和地下水位高低有着重要关系。 Although there is a conceptual understanding on chemical transport from soil to surface runoff, there are little literature and research results actually quantifying those individual processes. A laboratory flow cell and experimental procedures to quantify chemical transport from soil to runoff by each of the individual processes: i.e., 1 soil erosion; 2 Bernoulli effect; 3 diffusion; and 4 convention were developed. Different vertical hydraulic gradients were imposed by setting the flow cell to saturation condition and artesian seepage conditions. Additional quantitative data describing the contribution from each individual chemical loading process under different surface runoff and soil hydrologic conditions were obtained. The experimental data clearly demonstrated that Bernoulli effect caused increased chemical transport from soil into surface runoff. Under saturation condition, with increasing of runoff flow rate from 55 mL/s to 250 mL/s, bromide loss flux caused by Bernoulli effect was augmented from 14% to 53% from soil into surface runoff. According to the data, the mixing zone depth was gotten by mixing theories under saturation condition and artesian seepage conditions. The mixing zone depth was less than 5 mm under saturation condition, and it changed as hydraulic head and runoff flow rate under artesian seepage conditions. Chemical transport has a significant relationship to surface runoff flow rate and groundwater table.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2009年第11期97-102,共6页 Transactions of the Chinese Society of Agricultural Engineering
基金 美国农业部项目--土壤水动力及其在土壤侵蚀和水质的有效管理项目(3602-12220-009-00)
关键词 土壤 渗流 溶质迁移 地表水 径流 伯努利效应 soils seepage solute transport surface waters runoff Bernoulli effect
  • 相关文献

参考文献15

  • 1Ahuja L R, Lehmen O R. The extent and anture of rainfall-soil interaction in the release of soluble chemicals to runoff[J].JEnvironQual, 1983, 12:34-40.
  • 2Zhang X C, Norton L D, Lei T, et al. Coupling mixing zone concept with convection diffusion equation to predict chemical transfer to surface runoff[J]. Transactions of the ASAE, 1999, 42(4): 987-994.
  • 3Wallach R, Jury W A, Spencer W F. Transfer of chemical from solution to surface runoff: a diffusion-based soil model[J].SoilSciSocAmJ, 1988, 52.- 612-618.
  • 4Wallach R, VanGenuchten M T, Spencer W F. Modeling solute transfer from soil to surface runoff: the concept of effective depth of transfer[J]. J Hydrology, 1989, 109(3/4): 307-317.
  • 5王全九,沈冰,王文焰.降雨动能对溶质径流过程影响的实验研究[J].西北水资源与水工程,1998,9(1):17-21. 被引量:13
  • 6Wang Q J, Horton R, Shao M A. Effective raindrop kinetic energy influence on soil potassium transport into runoff[J]. Soil Science, 2002, 167(6): 369-376.
  • 7张亚丽,李怀恩,张兴昌,孟庆香.降雨-径流-土壤混合层深度研究进展[J].农业工程学报,2007,23(9):283-290. 被引量:19
  • 8Gao Bin, Walter M T, Steenhuis T S, et al. Rainfall induced chemical transport from soil to runoff: theory and experiments[J].Journal of Hydrology(Amsterdam), 2004, 295(1/2/3/4): 291 -304.
  • 9Ahuja L R, Rojas K W, Hanson J D, et al. Root zone water quality model[M].Colorado, USA: Watre Resources Publication, LLC, 2000.
  • 10Bingner R L, Theurer F D, Yuan Y. AnnAGNPS Technical Processes Documentation (Version 4.0)[M]. USDA-ARC National Sedimentation Laboratory & USDA-NRCS National Water and Climate Center, 2007.

二级参考文献46

  • 1王全九,王文焰,沈晋.黄土坡面溶质随径流迁移相应函数模型[J].水利学报,1994,26(11):18-21. 被引量:4
  • 2王辉,王全九,邵明安.人工降雨条件下黄土坡面养分随径流迁移试验[J].农业工程学报,2006,22(6):39-44. 被引量:83
  • 3张亚丽,李怀恩,张兴昌,肖波.牧草覆盖对坡面土壤矿质氮素流失的影响[J].应用生态学报,2006,17(12):2297-2301. 被引量:21
  • 4Li H E,Joseph H W L,Koenig A.Nutrient load estimation in nonpoint source pollution of Hong Kong region[J].Water Science and Technology,2005,51(3,4):209-216.
  • 5Wang Q J,Robert H,Shao M.Effective kinetic energy influence on soil potassium transport into runoff[J].Soil Science,2002,167(6):369-376.
  • 6Viney N R,Sivapalan M,Deeley D.A conceptual model of nutrient mobilization and transport applicable at large catchments scales[J].Journal of Hydrology,2000,(240):23-44.
  • 7Huff D D,Kruger P.The chemical and physical parameters in a hydrological transport model for radioactive aerosols[J].Processes of International Hydrology Symposia,1967,(1):128-135.
  • 8Wallach R,Grigorina G,Rivlin J.A comprehensive mathematical model for transport of soil-dissolved chemicals by overland flow[J].J of Hydrology,2001,247:85-99.
  • 9Donigian A S,Beyerlein D C.Agricultural runoff management(ARM) model.version II:refinement and testing[M].EPA 600/3-77-098.US Environment Protection Agency,Athens,GA,1977,293.
  • 10Frere M H,Onstad C A,Holtan N H.ACTMO,An agricultural chemical transport model[R].U.S.Dep.Of Agric.Pub.ARS-H-3.U.S.Government Printing Office,Washington,D.C.1975,56.

共引文献28

同被引文献95

引证文献8

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部