期刊文献+

一种基于NPA的加权“1 V m”SVM高光谱影像分类算法 被引量:3

An Algorithm of Weighted "1 V m" SVM Multi-classification for Hyperspectral Remote Sensing Image with NPA
原文传递
导出
摘要 根据支持向量机(SVM)的计算理论,结合高光谱影像的数据特点,利用最近点算法(NPA)求两类最优超平面,为每类设立一个合理的权指标,提出了基于NPA的加权"1 V m"SVM算法来实现高光谱遥感影像多分类,降低了计算的复杂度和计算量,提高了SVM高光谱遥感影像分类的可操作性和分类效率。 According to the SVM computation theory and the features of hyperspectral remote sensing(RS) image data,the optimal hyperplane between two classes is computed by the nearest points algorithm(NPA).Reasonable weight indicators are designed for each class and a new weighted "1 V m" SVM based on NPA is proposed to achieve Hyperspectral RS image classification.The new algorithm can reduce the computational complexity and calculation of SVM,and improve SVM feasibilities and efficiencies for hyperspectral RS image classification. Finally, a test was carried out on OMIS image and good results are obtained.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第12期1444-1447,共4页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2006CB701303)
关键词 SVM 最近点算法 最大间隔原则 高光谱遥感影像 加权“1 V m”SVM SVM NPA MMP hyperspectral RS image W "1 V m"
  • 相关文献

参考文献4

  • 1黄发良,钟智.用于分类的支持向量机[J].广西师范学院学报(自然科学版),2004,21(3):75-78. 被引量:14
  • 2Mavroforakis M E, Sdralis M, Theodoridis S. A Novel SVM Geometric Algorithm Based on Reduced Convex Hulls[C]. The 18th International Conference, Hong Kong, 2006.
  • 3徐勋华,王继成.支撑向量机的多类分类方法[J].微电子学与计算机,2004,21(10):149-152. 被引量:27
  • 4Keerthi S S, Shevade S K, Bhattacharyya C,et al. A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design [J]. IEEE Transactions on Neural Networks, 2000, 11 ( 1 ) : 124-136.

二级参考文献10

  • 1Boser,GuyonI,Vapnik V.A training algorithm for optimal margin classifiers[A].Haussler D.Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory[C].ACMPress,1992.144-152.
  • 2Platt J C.Fast Training of SVMs Using Sequential Minimal Optimization.In Schllopf B,Bruges C J C,Smola A J eds. Advances in Kernel Methods-Support Vector Learning,Cambridge,MA:MIT Press,1998:185-208.
  • 3Platt J C.Using Sparseness and Analytic QP to Speed Training of Support Vector Machine.
  • 4KeHai Xin,ZhangXue Gong.Editing Support Vector Machine.In:Proceedings of International Joint Conference on Neural Networks,Washton,USA,2001,2:1464-1467.
  • 5Vladimir N.Vapnik著,张学工译.统计学习理论的本质.北京.清华大学出版社,2000.
  • 6边肇祺,张学工编著.模式识别.第二版,北京,清华大学出版社,2000.pp284-304
  • 7Angulo Cecilio Parra Xavier Català, Andreu. K-SVCR. A support vector machine for multi-class classification.Neurocomputing Volume. 55, Issue: 1-2, September, 2003,pp. 57-77.
  • 8J Weston and C Watkins. Multi-class support vector machines.Royal Holloway University of London, Technical Report,CSD-TR-98-04, May 20, 1998.
  • 9李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108
  • 10李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71

共引文献39

同被引文献26

  • 1黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 2Boardman J, Kruse F. Automated Spectral Analysis: A Geological Example Using AVIRIS Data [ C]. The 10th Thematic Conference on Geologic Remote Sens- ing, North Grapevine Mountains, Nevada, 1994.
  • 3Xu Bing, Gong Peng. Land-use/Land-cover Classi- fication with Multispectral and Hyperspectral EO-1 Data[J]. Photogrammetric Engineering and Remote Sensing, 2007,73(8): 955-965.
  • 4Chang C, Lin C. LIBSVM: A Library for Support Vector Machines [OL]. http://csie, ntu. edu. tw/cj- lin/libsvm, 2001.
  • 5Kressel U. Pairwise Classification and Support Vec- tor Machines [M]. Advances in Kernel Methods-- Support Vector Learning. Cambridge: MIT Press, 1999:255-268.
  • 6Platt J, Cristianini N, Shawe-Taylor J. Large Mar- gin DAGs for Multiclass Classification [ J]. Ad- vances in Neural Information Processing Systems, 2000,12(3) : 547-553.
  • 7Azimi-Sadjadi M R, Zekavat S A. Cloud Classifica- tion Using Support Vector Machines[C]. The Geo- science and Remote Sensing Symposium (IGARSS 2000), Honolulu, HI, 2000.
  • 8Hsu C, Lin C. A Comparison of Methods for Mul- ticlass Support Vector Machines[J]. IEEE Transac-tions on Neural Networks, 2002,13(2): 415-425.
  • 9吴今培,孙德山.现代数据分析[M]机械工业出版社,2006.
  • 10[美]J.P.MarquesdeSa著,吴逸飞.模式识别[M]清华大学出版社,2002.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部