期刊文献+

水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学(英文) 被引量:1

High-Resolution Solid-State NMR Spectroscopy of Membrane Bound Proteins and Peptides Aligned in Hydrated Lipids
下载PDF
导出
摘要 有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在"仿真"水化磷脂层中高分辨结构的重要谱学方法.由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量,从而获得与取向相关的各向异性自旋相互作用.这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构.近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法.该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展. Solid-state nuclear magnetic resonance (NMR) of aligned samples has been rapidly emerged as a successful and important spectroscopic approach for high-resolution structural characterization of membrane-bound proteins and peptides in their “native-like” hydrated lipid bilayers. Because the structures, dynamics, and functions of membrane-bound proteins and peptides are highly associated with heterogeneous native environments, proteins and peptides are prepared for solid-state NMR measurements in the presence of either bilayers that are me- chanically aligned on glass plates or magnetically aligned bicelles. Orientation dependent aniso- tropic spin nuclear interactions from these aligned proteins and peptides can be obtained. These orientationat restraints can be assembled into high-resolution three-dimensional structures. Driven by significant advances in sample preparation protocols as well as NMR probes and other methodology developments in the past decade, the aligned sample NMR approach has been well developed and become an effective way for structural characterization of membrane-bound proteins and peptides. This review introduces high resolution solid-state NMR spectroscopy of aligned samples and summarizes recent methodology developments in this arena.
作者 傅日强
出处 《波谱学杂志》 CAS CSCD 北大核心 2009年第4期437-456,共20页 Chinese Journal of Magnetic Resonance
基金 supported by the NSF Cooperative Agreement DMR-0654118 and the State of Florida
关键词 固体核磁共振 膜蛋白 取向约束 水化磷脂 solid-state NMR, membrane-bound protein, orientational constraint, hydrated lipids
  • 相关文献

参考文献107

  • 1Duong Ly K C, Nanda V, Degrado W F, et al. The conformation of the pore region of the M2 proton channel depends on lipid bilayer Environment[J]. Protein Sci, 2005, 14: 856-861.
  • 2Fu R, Brey W W, Cross T A. Aligned membrane oroteins: Structural studies[J]. Encyclopedia of NMR, in press.
  • 3Page R, Li C, Hu J, et al. Lipid bilayers: An essential environment for the understanding of membrane proteins [J]. Magn Reson Chem, 2007, 45:S2-S11.
  • 4Fraser C M, Gocayne J D, White O, et al. The Minimum gene complement of mycoplasma genitalium[J]. Science, 1995, 270: 397-403.
  • 5Patrzykat A, Douglas S. Antimicrobial peptides: cooperative approaches to protection[J]. Protein Pept Lett, 2005, 12: 19-25.
  • 6Brogden K A. Antimierobial peptides: Pore formers of metabolic inhibitors in bacteria? [J]. Nat Rev Microbiol,2005, 3: 238-250.
  • 7Campagna S, Saint N, Molle G, et al. Structure and mechanism of action of the antimicrobial peptide piscidin [J]. Biochem, 2007, 46:1 771-1 778.
  • 8Yeaman M, Yount N. Unifying themes in host defence effector polypeptides[J]. Nat Rev Microbiol, 2007, 5: 727-740.
  • 9Doyle D A, Cabral J M, Pluetzner R A, et al. The structure of the potassium channel: Molecular basis of K^+ conduction and selectivity[J]. Science, 1998, 280: 69-77.
  • 10Jian Y, Lee A, Chen J, et al. Crystal structure and mechanism of a calcium-gated potassium channel[J]. Nature, 2002, 417: 515-522.

同被引文献65

  • 1Ladizhansky V, Vega S. Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids[J]. J Chem Phys, 2000, 112(16): 7 158-7 168.
  • 2Dvinskikh S V, Zimmermann H, Maliniak A, et al. Heteronuclear dipolar recoupling in liquid crystals and solids by PISEMA-type pulse sequences[J]. J Magn Reson, 2003, 164(1): 165- 170.
  • 3Oldfield E, Meadows M, Rice D, et al. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems[J]. Biochemistry, 1978, 17(14): 2 727- 2 740.
  • 4Stringer J A, Bronnimann C E, Mullen C G, et al. Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes[J]. J Magn Reson, 2005, 173(1): 40-48.
  • 5Wu Z, Ding S. Prevention of spinning induced sample deterioration during long time solid-state NMR experiments of quadrupolar spin systems[J]. Solid State Nucl Magn Reson, 2009, 35(4): 214-216.
  • 6Wang A C, Bax A. Minimizing the effects of radio-frequency heating in multidimensional NMR experiments[J]. J tiomol NMR, 1993, 3(6): 715-720.
  • 7Kugel H. Improving the signal-to-noise ratio of NMR signals by reduction of inductive losses[J]. J Magn Reson, 1991, 91(1): 179-185.
  • 8Led J J, Petersen S B. Heating effects in 13C NMR spectroscopy on aqueous solutions caused by proton noise decoupling at high frequencies[J]. J Magn Reson, 1978, 32(1): 1 - 17.
  • 9Brus, J. Heating of samples induced by fast magic-angle spinning[,/]. Solid State Nucl Magn Reson, 2000, 16(3): 151- 160.
  • 10Thurber K R, Tycko R. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder[J]. J Magn Reson, 2009, 196(1): 84-87.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部