期刊文献+

基于主成分分析的DEM粗差检测 被引量:5

Detection of Gross Errors in DEM Based on Principal Components Analysis
下载PDF
导出
摘要 为探讨误差的空间分布特性对数字高程模型(DEM)粗差检测率的影响,建立了独立粗差模型和相关粗差模型,并模拟了不同粗差率(0.2%~3.0%)的数据.将随机分布的粗差加入DEM中,采用基于主成分分析的粗差检测算法进行了试验.结果表明,无论粗差是否空间相关,随粗差率增大,检测率均下降.对于独立分布的粗差,当粗差率小于1.0%时,基本可以定位所有污染数据;而对于空间相关的粗差,当粗差率等于1.0%时,检测率不足50%.可见,粗差的空间相关性及较大的粗差率均会降低基于主成分分析的粗差检测算法的检测率. To probe into the effect of error spatial distribution on the detection rate of gross error for a digital elevation model ( DEM), two different models, spike-like and pyramid-like gross error models, were constructed. Data with different gross error rates of 0.2% to 3.0% were simulated and added to DEM randomly. A detection algorithm based on the principal components analysis (PCA) was used for tests. The result shows that whether gross errors are spatially correlated or not, the detection rate decreases with increasing of the gross error rate. To a spike-like gross error, when the rate is below 1.0% , almost all gross errors can be found out. While to a pyramid-like gross error, the detection efficiency decreases to 50% when the rate is equal to 1.0%. It can be found that the spatial relativity and a high gross error rate will cut down the detection rate of the algorithm.
出处 《西南交通大学学报》 EI CSCD 北大核心 2009年第6期830-834,854,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(40271092) 广西教育厅科研项目(200808LX348)
关键词 数字高程模型 粗差分布 粗差率 主成分分析 digital elevation model (DEM) gross error distribution gross error rate principal components analysis
  • 相关文献

参考文献8

  • 1BARNETF V, LEWIS T. Outliers in statistical data[M]. C hichester: John Wiley and Sons, 1984: 213-215.
  • 2FRENEAU M E, SAMSON P J. Use of cluster analysis to define periods of similar meteorology and precipitation chemistry in eastern North America, Part Ⅰ: Transport patterns[J]. Journal of Applied Meteorology, 1990, 29(8) : 735-750.
  • 3CHAVEZ P S, YAW KWARTENG A. Extracting spectral contrast in landsat thematic mapper image data using selective principal component analysis[ J]. Photogrammetrie Engineering and Remote Sensing, 1989, 55 (3) : 339-348.
  • 4DAVIES L, GATHER U. The identification of muhiple outliers[J]. Journal of the American Statistical Society, 1993, 88: 782-801.
  • 5HAWKINS D M. The detection of errors in multivariate data using principal components [ J ]. Journal of the American Statistical Association, 1974, 69: 340-344.
  • 6LOPEZ C, KAPLAN E. Principal component analysis applied for outlier location and the missing value problem using surface wind and pressure data[DB/OL]. (1994-06-20) [ 2008-07-24 ] http://www. fing. edu. uy/ncarlos/papers/rep93_5/viento. htm.
  • 7BETHEL J S, MIKHAIL E M. Terrain surface approximation and on-line quality assessment[J]. International Archives of Photogrammetry and Remote Sensing, 1984, 25 (32) : 23-32.
  • 8OSTMAN A. Quality control of photogrammetrically sampled digital elevation model [ J ]. Photogrammetric Record, 1987, 12 : 333-341.

同被引文献64

引证文献5

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部