期刊文献+

Uniform attractors for non-autonomous Klein-Gordon-Schrdinger lattice systems 被引量:3

Uniform attractors for non-autonomous Klein-Gordon-Schrdinger lattice systems
下载PDF
导出
摘要 The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established. The existence of a compact uniform attractor for a family of processes corre- sponding to the dissipative non-autonomous Klein-Gordon-SchrSdinger lattice dynamical system is proved. An upper bound of the Kolmogorov entropy of the compact uniform attractor is obtained, and an upper semicontinuity of the compact uniform attractor is established.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第12期1597-1607,共11页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.10771139) the Ph.D. Program of Ministry of Education of China(No.200802700002) the Shanghai Leading Academic Discipline Project(No.S30405) the Innovation Program of Shanghai Municipal Education Commission(No.08ZZ70) the Foundation of Shanghai Talented Persons(No.049) the Leading Academic Discipline Project of Shanghai Normal University(No.DZL707) the Foundation of Shanghai Normal University(No.DYL200803)
关键词 compact uniform attractor NON-AUTONOMOUS Klein-Gordon-SchrSoinger lattice system Kolmogorov entropy upper semicontinuity compact uniform attractor, non-autonomous, Klein-Gordon-SchrSoinger lattice system, Kolmogorov entropy, upper semicontinuity
  • 相关文献

参考文献2

  • 1尹福其,周盛凡,殷苌茗,肖翠辉.KGS格点系统的全局吸引子[J].应用数学和力学,2007,28(5):619-630. 被引量:7
  • 2W.-J. Beyn,S. Yu Pilyugin. Attractors of Reaction Diffusion Systems on Infinite Lattices[J] 2003,Journal of Dynamics and Differential Equations(2-3):485~515

二级参考文献14

  • 1Chepyzhov,V V,Vishik M I.Kolmogorov's ε-entropy for the attractor of reaction-diffusion equation[J].Math Sbornik,1998,189(2):81-110.
  • 2ZHOU Sheng-fan.On dimension of the global attractor for damped nonlinear wave equation[J].J Math Phys,1999,40(3):1432-1438.
  • 3Hale J K.Asymptotic Behavior of Dissipative Systems[M].Rhode Island:Amer Math Soc providence,1988.
  • 4Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].Appl Math Sci 68.New York:Springer-Verlag,1988.
  • 5Hayashi N,Von Wahl W.On the global strong solutions of coupled Klein-Gordon-Schr(o)dinger equations[J].J Math Soc Japan,1987,39(2):489-497.
  • 6Lorentz G,GolitschekM,Makovoz Y.Constructive Approximation.Advanced Problem.Grundlehrender Mathematischen Wissenschaften[M].([Functional Principles of Mathematical Sciences] Vol 304).Berlin:Springer-Verlag,1996.
  • 7Chow S N,Mallet-Parat J,Shen W.Traveling waves in lattice dynamical systems[J].J Diff Equa,1998,149(2):248-291.
  • 8Shen W.Lifted lattices,hyperbolic structures,and topological disorders in coupled map lattices[J].SIAM J Appl Math,1996,56(5):1379-1399.
  • 9Yu J,Collective behavior of coupled map latices with asymmetrical coupling[J].Phys Lett A,1998,240(1/2):60-64.
  • 10Bates P W,Lu K,Wang B,Attractors for lattice dynamical systems[J].Int J Bifurcations and Chaos,2001,11(1):143-152.

共引文献6

同被引文献2

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部