期刊文献+

GaN基512×1元紫外长线列焦平面探测器组件 被引量:8

GaN-based 512×1 Ultroviolet linear Focal Plane Arrays
原文传递
导出
摘要 介绍了GaN基512×1元紫外长线列焦平面探测器组件的研制过程,并给出了器件的性能。利用金属有机化学气相沉积(MOCVD)方法生长的多层A1GaN外延材料,通过刻蚀、钝化、欧姆接触电极制备等工艺,制作了256×1的背照射AlGaN紫外探测芯片。并对该芯片进行了I-V特性、响应光谱等测试,得到芯片的暗电流Id为4.22×10^-12A、零压电阻风为1.01×10^10Ω,响应波段为305~365nm,响应率约为0.12A/W。该AlGaN探测芯片与电容反馈互阻抗放大器(CTIA)结构的读出电路互连成为一个256模块,两个256模块经过拼接、封装后制备出512×1元紫外长线列焦平面探测器组件。测量室温(300K)时焦平面组件(实际524元)的响应,平均电压响应率为1.8×10^8V/w,其盲元率为9.0%,响应不均匀性为17.8%,359nm处的平均波段探测率为7×10^10cmHz^1/2W^-1。并对器件性能进行了分析。 The fabrication and characterization of GaN-based 512×1 ultraviolet linear photodetector are reported in this work. AIGaN multilayers are grown in wetel-organic chemical vapor deposition (MOCVD). Material etching, passivation, metal contact and other techniques are used in the manufacture of 256×1 back-illuminated A1GaN detector. The current-voltage (LV) curve shows that current at zero bias is 4.22×10^-12A and resistance is 1.01×10^10Ω. A flat band spectral response is achieved in the 305-365 rim. The detector displays an unbiased responsivity of 0. 12 A/W at 359 nm. This detector is bonded to a readout circuit with capacitive feedback transimpedance amplifier (CTIA) structure. Two modules are put together to form 512 linear ultraviolet focal plane arrays (FPA). The FPA is measured in 300 K and achieved average voltage responsivity 1. 8×10^8 V/W, the blind rate 9.0 % and the response nonuniformities 17.8 %. The measurement of signal and noise led to a detectivity of 7×10^10 cmHz^1/2 W^-1 at 359 nm.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第12期3515-3518,共4页 Acta Optica Sinica
基金 国家自然科学基金(60807037,60708028) 中国科学院知识创新工程青年人才领域关键项目资助课题
关键词 紫外探测器 512元长线列 工艺 GaN基 响应率 ultraviolet detector 512 linear technology GaN-based responsibility
  • 相关文献

参考文献2

二级参考文献7

  • 1袁永刚,刘大福,邱惠国,李向阳.128×128元氮化镓紫外焦平面读出电路的设计与封装研究[J].红外与激光工程,2007,36(z1):93-96. 被引量:3
  • 2S Strite,H Morkoe.GaN,AlN,and InN:a review[J].J.Vac.Sci.Technol.B,1992,10(4):1237-1266.
  • 3C Stampfl,C G Van der Walle.Doping of AlxGa1-xN[J].Appl.Phys.Lett.,1998,72:459.
  • 4S Fischer,C Wetzel,E E Haller,et al.On p-type doping in GaN-acceptor binding euergies[J].Appl.Phys.Lett.,1995,67:1298.
  • 5Ruvimov S,Weber Z L,Washburn J.M icrostructure of Ti/Al ohmic contacts for n-AlGaN[J].Appl Phys Lett.,1998,73 (18):2582.
  • 6B Van Daele,G Van Tendeloo W.Ruythooren,et al.The role of Al on Ohmic contact tormation on n-type GaN and Al GaN/GaN[J].Appl.Phys.Lett.,2005,87,061905.
  • 7G.K.Reeves and H.B.Harrison,IEEE Electron Device letters,1982(EDL-3):111.

共引文献7

同被引文献73

  • 1陈江峰,李雪.GaN p-i-n紫外探测器的研制[J].半导体光电,2005,26(6):491-493. 被引量:1
  • 2徐运华,张松,谢文青,亢勇,方家熊.焦平面输入电路研究[J].红外与激光工程,2006,35(5):555-558. 被引量:6
  • 3张燕,龚海梅,白云,陈亮,许金通,汤英文,游达,赵德刚,郭丽伟,李向阳.空间用紫外探测及AlGaN探测器的研究进展[J].激光与红外,2006,36(11):1009-1012. 被引量:18
  • 4Z. Yin, H. Luo, P. Wang et al. Growth, characterization and properties of relaxor ferroelectric PMN-PT single crystals [J]. Ferroelectrics, 1999, 229(1-4): 207-216.
  • 5Paul W. Kruse. Uncooled Thermal Imaging,Arrays and System,and Applications[M]. Washington: SPIE Press, 1997. 1-9.
  • 6R. W. Whatmore, A. Patel, N. M. Shorrocks et al. Ferroelectric materials for thermal IR sensors state-of-the-art and perspectives[J]. Ferroelectrics, 1990, 104(1): 269-283.
  • 7Tang Yanxue, Zhao Xiangyong, Feng Xiqi et a l. Pyroelectrie properties of [111]-oriented Pb (Mg1/3 Nb2/3 )Oa-PbTiOa crystals[J].Appl. Phys. Lett., 2005, 86(8)I 082901.
  • 8Tang Yanxue, Wan Xinming, Zhao Xiangyong et al. Large pyroelectric response in relaxor-based ferroelectric (1- x)Pb (Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. J. Appl. Phys. , 2005, 98(8) : 084104.
  • 9W. Y. Chung, T. P. Sun, Y. L. Chinet al. Design of pyroelectric IR readout circuit based on LiTaO sub(3) detectors [J]. Proc. IEEE Int. Symp. Grc. Syst. , 1996, 4:225-228.
  • 10T. David Binnie , Harald J. Weller. An integrated 16 × 16 PVDF pyroelectric sensor array[J]. Ultrasonics, Ferroelectrics and Frequency Control, 2000, 47(6) : 1413-1420.

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部