期刊文献+

混合变量的余能原理及其应用 被引量:1

Principles of complementary energy with mixed variables and an application
下载PDF
导出
摘要 应用功的互等定理,建立了小变形线弹性混合变量的第一余能(最小余能)原理和第二余能原理。以该原理为基础,给出了弯曲矩形板混合变量相关的两个余能原理。并且,应用第二余能原理计算了一复杂边界条件下矩形板的弯曲。 First and second principle of complementary energy with mixed variables of linear elasticity of small displacement theory are established by the use of the reciprocal theorem. On the basis of the two principles, two principles of complementary energy related to bending of rectangular plates are given. And the second principle is applied to calculation of bending of a rectangular plate with complicated boundary conditions.
出处 《燕山大学学报》 CAS 2009年第6期495-504,527,共11页 Journal of Yanshan University
关键词 弱容许应力 平衡弱容许位移 混合变量的最小余能原理 混合变量的第二余能原理 weakly admissible stress weakly admissible displacement of equilibrium principle of minimal complementary energy with mixed variables second principle of complementary energy with mixed variables
  • 相关文献

参考文献6

  • 1钱令希.余能原理[J].中国科学,1950,(1):449-449.
  • 2付宝连.构造容许位移的边界能转换.应用数学和力学,1986,7(12):1163-1174.
  • 3付宝连.应用混合能量原理构造弯曲矩形板的容许位移.东北重型机械学院学报,1987,11(3):86-94.
  • 4付宝连.功的互等定理和线弹性力学的变分原理.应用数学和力学,1987,10(3):265-270.
  • 5付宝连.弯曲薄板功的互等新理论[M].北京:科学出版社,2004:55-214.
  • 6Washizu K. Variational methods in elasticity and plasticity [M]. 2nd Edition. Oxford: Pergamon Press, 1975.

共引文献8

同被引文献22

  • 1Bernoulli J. New Mechanics or Staties [M]. 1725.
  • 2Lagrange J I_;. Mecanique Analytique [M]. 1788.
  • 3Castigliano A. Nuova teoria intomo dellequilibrio der sistrmi elas- tici [J]. AttiAcc Sci, Torino, 1875.
  • 4Qian Ling-xi. Complementary energy principle [J]. Scientia Sinica, 1950,1: 449-456.
  • 5Hellinger E. Der allgemeine ausatz der mechanik der kontinua [M] //Encyclopadie der Mathematischen Wissenschaften: Part4, 1914: 602-694.
  • 6Reissner E. On a variational theorem in elasticity [J]. Journal ofMathematics and Physics, 1950,29 (2): 90-95.
  • 7Reissner E. On variational principles in elasticity [C] //Proceeding of Symposia in Applied Mathematics. New York: MacGraw Hill, 1958: 1-6.
  • 8Hu Hai-chang: On some variational principles in the theory ofelas- ticity and the theory ofplasticity [J]. ScientiaSinica, 1955,4 (1): 33-54.
  • 9Washizu K. Variational Methods In Elasticity and Plasticity (M]. 2rid Edition. Oxford: Pergamon Press, 1975.
  • 10Tonti E. Variational principles in elastistaics [J]. Mechanica, 1967,4 (2): 201-208.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部