期刊文献+

一类非线性分数阶微分方程解的存在性

EXISTENCE OF SOLUTIONS FOR A CLASS NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION
下载PDF
导出
摘要 利用经典的Leray-Schauder择一定理和Banach压缩映射原理给出了分数阶微分方程Dρu(t)=f(t,u(t),Dβu(t))的初值问题解的存在惟一性. The existence and uniqueness of the solutions for a class nonlinear factional differential equation Dρu(t)=f(t,u(t),Dβu(t)) is discussed by making use of the Leray-Schauder nonlinear alternative theorem and Banach contraction mapping principle.
作者 张宏伟 刘冰
出处 《北京工商大学学报(自然科学版)》 CAS 2009年第6期72-74,共3页 Journal of Beijing Technology and Business University:Natural Science Edition
基金 河南省自然科学基金资助项目(0611053300)
关键词 分数阶微分方程 初值问题 Leray-Schauder择一定理 BANACH压缩映射原理 fractional differential equation initial value problem Leray-Schauder alternative theorem banach contraction mapping principle
  • 相关文献

参考文献8

  • 1Podlubny I. Fractional differential equations[ M]. New York: Academic Press, 1999.
  • 2Akilbas A, Srivatava H M, Trujillo J J. Theory and applications of fractional differential equations[M]. Amsterdams: Elsevier B.V., 2006.
  • 3Morita T. Solution for the initial-value problem of a fractional differential equations[J]. J of Korean Physical Society, 2005, 46(3): 584- 590.
  • 4Lakshmikantham V, Vatsala A S. Basic theory of fractional differential equations [ J ]. Nonlinear Analysis, 2008, 69:2677 - 2682.
  • 5Lakshmikantham V. Theory of fractional differential equations[J]. Nonlinear Analysis, 2008, 69: 3343- 3377.
  • 6Daftardar-Gejji V, Jafari H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivates[J]. J of Math Anal Appl, 2007, 328: 1026 - 1033.
  • 7Zeidler E. Nonlinear functional analysis, I: fixed point theorem[M]. New York: Springer-Verlag, 1986.
  • 8Lin W. Global existence theory and chaos control of fractional differential equation [J]. J of Math Analy Appl, 2007, 332:709 - 726.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部