期刊文献+

基于RBF神经网络的财产保险公司全面风险预警系统研究 被引量:3

A Study on Total Risk Premonition System of Property Insurance Company in China Based on RBF Neural Network
下载PDF
导出
摘要 在尝试提出我国财产保险公司全面风险预警指标体系的基础上,利用RBF神经网络构建了财产保险公司全面风险预警模型。然后,对预警信号提出了相应的风险处理方案。最后,利用该RBF神经网络进行全面风险预警,结果表明该网络计算误差小、收敛迅速,网络具有良好的泛化能力。 The paper first puts forward a total risk premonition index system, and based on RBF neural network, it sets up a total risk premonition model of property insurance company. Then it discusses plans to deal with warning signals. Finally, it applies this neural network to predicting financial crisis of property insurance company. The result is highly accurate and satisfying, and shows that the neural network exhibits good generalization ability.
出处 《管理学报》 CSSCI 2009年第12期1657-1660,共4页 Chinese Journal of Management
基金 国家自然科学基金资助项目(70671025/G0115)
关键词 全面风险 预警系统 RBF神经网络 total risk premonition system RBF neural network
  • 相关文献

参考文献8

  • 1DAVIS E P, KARIM D. Comparing Early Warning Systems for Banking Crises[J].Journal of Financial Stability, 2008,4 (2):89 - 120.
  • 2NG G S,QUEK C,JIANG H. FCMAC-EWS:A Bank Failure Early Warning System Based on a Novel Localized Pattern Learning and Semantically Associative Fuzzy Neural Network[J]. Expert Systems with Applications, 2008,34 (2):989- 1 003.
  • 3CIARLONE A, TREBECHI G. Designing an Early Warning System for Debt Crises[J]. Emerging Markets Review, 2005,6 (4) : 376- 395.
  • 4URICCHIO V F,GIORDANO R,LOPEZ N. A Fuzzy Knowledge-based Decision Support System for Groundwater Pollution Risk Evaluation[J]. Journal of Environmental Management, 2004,73 (2) : 189- 197.
  • 5曾忠东.基于模糊优选和神经网络的保险企业经营风险预警系统构建[J].四川大学学报(哲学社会科学版),2006(2):28-34. 被引量:3
  • 6郝丽萍,胡欣悦,李丽.商业银行信贷风险分析的人工神经网络模型研究[J].系统工程理论与实践,2001,21(5):62-69. 被引量:41
  • 7BINCHINI M, FRASCONI P, CORI M. Learning Without Local Minima in Radial Basis Function Networks[J]. IEEE Transactions on Neural Networks, 1995,6(3) :749-755.
  • 8孙祁祥,于小东.制度变迁中的中国保险业-风险与风险管理对策[M].北京:北京大学出版社,2007:111.

二级参考文献8

共引文献44

同被引文献21

  • 1曾忠东,李天德.模糊优选和神经网络结合:保险业经营风险预警的有效方法[J].现代财经(天津财经大学学报),2006,26(4):15-18. 被引量:4
  • 2肖东生,赵晓娟.企业组织创新风险预警[J].经济与管理研究,2007,28(5):81-84. 被引量:1
  • 3CARREIRA PERPINAN M A.Continuous Went variable models for dimensionality reduction and sequential data reconstruction[D].Ph.D Thesis,2001.
  • 4BINCHINI M,FRASCONI P.CORI M.Leaming without local minima in radial basis function net-works[J].IEEE Transactions on Neural Networks,1995,6 (3):749-755.
  • 5张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1992.43-60.
  • 6方华.偿付能力达标:2010年保险监管红线[N].金融时报,2010年.
  • 7James S. Trieschmann and George E. Pinches. A Multi- variate Model For Predicting Financially Distressed P - L Insurers [ J ]. Journal of Risk and Insurance, 1973,40 (3) :327 -337.
  • 8Ran Barniv and James B. MeDonald. Identifying Finan- cial Distress in the Insurance Industry: A Synthesis of Methodological and Empirical Issues [ J ]. The Journal of Risk and Insurance, 1992,59(4) :543 - 574.
  • 9Lee Suk Hun, Urrntia Jorge L. Analysis and prediction of insolvency in the property - liability insurance Industry : A Comparison of Logit and Hazard Models [ J ]. The Journal of Risk and Insurance, 1996(63) : 121 - 130.
  • 10D. Richard Cutler. A Simple Model to Predict Loss Ratios in the Domestic Stock Property-Liability Insurance In- dustry [ J ]. Quarterly Joumal of Business and Economic, 2005,44 : 129 - 139.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部