期刊文献+

基于案例的自主式水下机器人全局路径规划的学习算法 被引量:5

Autonomous Underwater Vehicles Global Path Planning Using Case-Based Learning Algorithm
下载PDF
导出
摘要 首次讨论了基于案例的学习方法在自主式水下机器人全局路径规划中的应用问题.基于案例的学习方法是一种增量式的学习过程,它根据过去的经验进行学习及问题求解.本文对基于案例的学习方法在自主式水下机器人的全局路径规划中的应用框架进行了初步研究,对案例属性的提取、案例的匹配和择优以及案例库的更新等问题提出了相应的算法.最后给出了几组仿真结果. This paper presents an AUV global path planning scheme using case-based learning algorithm.Case-based learning is a relatively new approach to path planning.Case-based learning is learning and reasoning from past episodic information about the enviromment .Retrieving and adapting an old one ,which approximately matches the current situation,can generate a new and suitable solution.In this research,the algorithm includes these parts:establishment of path attribute extracted from its features,matching and retrieving case from the case library,and updating the case library.The effectiveness of the algorithm is verified through simulations.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 1998年第5期1-7,共7页 Journal of Harbin Engineering University
关键词 自主式 水下机器人 全局路径规划 学习算法 autonomous underwater vehicle case-based learning global path planning
  • 相关文献

同被引文献48

  • 1叶志伟,郑肇葆.蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例[J].武汉大学学报(信息科学版),2004,29(7):597-601. 被引量:155
  • 2潘正军 康立山 陈毓屏.演化计算 [M].北京:清华大学出版社,1998..
  • 3[1]郑君里,杨行峻.人工神经网络.北京:高等教育出版社,1992
  • 4[2]陆汝铃.人工智能.北京:科学出版社,1996
  • 5[4]Michalski R S,Carbonell J G,Mitchell T M王树林译.机器学习-实现人工智能的途径.北京:科学出版社,1983
  • 6[5]Carbonell J G et al .An Overview of Machine Learning. "MACHINE LEARNING" Tioga Press, 1983
  • 7[6]Kurt Vanlehn .Learning One Subprocedure Per Lesson Artificial Intelligence. 1987:31
  • 8[7]Minton S and Carbonell J G.Stratigies for Learning Search Control Rules: An Explanation-based Approach IJCAl-10 Proceedings, 1987
  • 9[11]Vasudevan C, Ganesan K. Intelligent Mission Planner for Authonomous Underwater Vehicles. In Proc SPIE Conference on Knowledge-Based Artificial Intelligence Systems in Aerospace and Industry. Orlando, 1994:118-128P
  • 10[12]Goel A K. Callentine T J. An ExPerience-based Approach to Navigational Route Planning. In Proc IEEE/RSJInt. Conference on Intelligent Robots and System,1992:883-893P

引证文献5

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部