摘要
讨论了当a>0时,数列{a_n}(其中a_n=a^(a^n))的敛散性问题。主要结果是:当a>e^e时,{a_n}发散;当a<e^e时,{a_n}收敛。
This paper discusses the convergence and divergence of number series { an} when a >0 (here an=aaa... ) , and the main results are that { an} is divergence when a > ee...1 and {an} is convergence when a < ee1 .
关键词
极限
收敛
发散
数列
单调有界数列
monotony limitation, limit, convergence divergence