期刊文献+

基于周期的一阶隐马尔可夫模型及其学习算法 被引量:1

The First-Order Hidden Markov Model Based on Periodicity and Its Learning Algorithm
下载PDF
导出
摘要 对于周期变动明显的数据,本文通过引入周期状态转移矩阵,提出了一种基于周期的一阶隐马尔可夫模型,分析并给出了该模型的似然计算、隐状态估计和模型训练算法。最后的数值实验表明,该模型能有效提高预测的精确度和模型的似然度,并加快模型训练的收敛速度。 By introducing a periodic state transfer matrix,a first-order HMM model based on periodicity is proposed for the data with explicit periodicity. The algorithms,including likelihood computation,hidden state estimation and model training,are also presented and analyzed. Finally,numerical simulation experiments show that the new method efficiently improves the prediction precision and the model likelihood. Moreover,it also increases the convergence rate of model training.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第12期103-106,共4页 Computer Engineering & Science
关键词 隐马尔可夫模型(HMM) 周期状态转移矩阵 时间序列 最小二乘法 Hidden Markov Model entropy periodic state transfer matrix time series least square method
  • 相关文献

参考文献4

  • 1Friedman N. Learning Belief Networks in the Presence of Missing Values and Hidden Variables[C]//Proc of the 14th Int'l Conf on Machine Learning, 1997:125-133.
  • 2Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition[J]. Proceeding of IEEE, 1989,77 (2) : 257-286.
  • 3Rossi A,Gallo G M. Volatility Estimation via Hidden Markov Models[J]. Journal of Empirical Finance, 2006,13 (2):203-230.
  • 4Mari J-F, Haton J-P. Kriouile A B. Automatic Word Recognition Based on Second-Order Hidden Markov Models [J]. IEEE Trans on ASP, 1997,5 (1) : 22-25.

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部