摘要
证明了Banach空间X是局部一致非方的当且仅当对任意x∈S(X),都有dX(x,1)>0;X是强严格凸的当且仅当对任意x∈S(X),yn∈S(X)和α∈R,若‖x+αyn‖→1和‖x-αyn‖→1,则α=0;
It is shown that Banach space X is locally uniformly non square if and only if d X(x,1)>0 for all x∈S(X) ; X is strongly strictly convex if and only if whenver for any x∈S(X),y n∈S(X) and α∈R, if ‖x+αy n‖→0 , and ‖x-αy n‖→1, then α=0 ;and X is strongly strictly convex if and only if X is midpoint locally uniformly convex.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第6期19-21,共3页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
中山大学高等学术研究中心(96M1)资助
关键词
强严格凸
中点局部一致凸
一致非方
巴拿赫空间
strongly strictly convex, midpoint locally uniformly convex, uniformly non square, locally uniformly non square