摘要
用组合系综说明了慢效应中的剩余极化.从时域介电谱的慢分量可计算出驻极体中冷冻极化的理论曲线,其结果和实验一致.慢极化属于非马尔可夫过程,其历史记忆效应使电动力学中除麦克斯韦场方程之外还要补充源方程.证明了线性介电响应中存在复介电常数的充分和必要条件为极化过程是马尔可夫过程.在聚合物的β转变中,二级和三级结构运动的恢复力系数出现抛物线型软化.
In dielectric,piezoelectric and pyroelectric effects,fast effect is yielded by the primary structure and slow effect is yielded by the secondary and tertiary structures in dielectrics.Using the method of composite ensemble,the residual polarization of slow effect is explained.The theoretical curve of frozen polarization in electrets is calculated,and is in agreement with the experiment.Slow polarization is a non Markovian process.Because of it’s recording history effect,the source equation must be added in electrodynamics besides Maxwell’s field equations.In linear response of polarization,the sufficient and necessary condition of existing a complex dielectric constant is that the process of polarization is Markovian.In β transition of polymers,the coefficient of restoring forces for the motion of secondary and tertiary structure parabolic softens with a parabolic type.
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第6期30-34,共5页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
中山大学科研基金
关键词
介电谱
组合系统
电介质结构
分级
马氏过程
dielectric spectra,composite ensemble,non Markovian process,polymer,slow effect