期刊文献+

Exact Solutions of Fractional-Order Biological Population Model 被引量:13

Exact Solutions of Fractional-Order Biological Population Model
下载PDF
导出
摘要 In this paper, the Adomian's decomposition method (ADM) is presented for finding the exact solutions of a more general biological population models. A new solution is constructed in power series. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method, some examples are provided.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期992-996,共5页 理论物理通讯(英文版)
关键词 biological populations model fractional Calculus decomposition method Mittag-Leffier function 生物种群模型 分数阶 精确解 ADM 分解法 幂级数 可靠性
  • 相关文献

参考文献21

  • 1F. Shakeri and M. Dehghan, Comput. Math. Appl. 54 (2007) 1197.
  • 2M.J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transformation, SIAM, Philadelphia (1981).
  • 3G.B. Whitham, Linear and Nonlinear Waves, John Wiley, New York (1974).
  • 4M. Tajiri and Y. Murakami, Phys. Lett. A 134 (1990) 217.
  • 5G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Academic, Dordrecht (1994).
  • 6G. Adomain, Math. Anal. Appl. 135 (1988) 501.
  • 7Y.G. Lu, Appl: Math. Lett. 13 (2000) 123.
  • 8M.E. Gurtin and R.C. MacCamy, Math. Biosc. 33 (1977) 35.
  • 9J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York (1972).
  • 10A. Okubo, Diffusion and Ecological Problem, Mathematical Models, Biomathematics 10, Springer, Berlin (1980).

同被引文献31

  • 1HongGuang Sun,Wen Chen.Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence[J].Science China(Technological Sciences),2009,52(3):680-683. 被引量:5
  • 2潘军廷,范梦慧,龚伦训.非线性单摆的Jacobi椭圆函数解[J].大学物理,2006,25(11):23-26. 被引量:8
  • 3Sabatier J,Agrawal O P,Tenreiro Machado J A.Advances in fractional calculus:theoretical developments and applications in physics and engineering[M].[S.l.]:Springer,2007.
  • 4Baleanu D,Diethelm K,Scalas E,et al.Fractional calculus models and numerical methods in series on complexity,nonlinearity and chaos[C].World Scientific,Singapore,2012.
  • 5Liu Y Q,Xin B G.Numerical solutions of a fractional predator-prey system[J].Advances in Difference Equations,2011,190475.
  • 6Ma J H,Liu Y Q.Exact solutions for a generalized nonlinear fractional Fokker-Planck equation[J].Nonlinear Analysis:Real World Applications,2010,11(1):515-521.
  • 7Liu J C,Hou G L.Numerical solutions of the space-and time-fractional coupled Burgers equations by generalized differential transform method[J].Applied Mathematics and Computation,2011,217(16):7001-7008.
  • 8Erturk V S,Yildirim A,Momanic S.The differential transform method and Pade approximants for a fractional population growth model[J].International Journal of Numerical Methods for Heat&Fluid Flow,2012,22(6/7):791-802.
  • 9He J H.Homotopy perturbation method:a new nonlinear analytical technique[J].Applied Mathematics and Computation,2003,135(1):73-79.
  • 10Yildirim A.Application of the homotopy perturbation method for the Fokker-Planck equation[J].International Journal for Numerical Methods in Biomedical Engineering,2010,26(9):1144-1154.

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部