期刊文献+

Interference Angle on Quantum Rotational Energy Transfer in Na+Na_2 (A^1Σ_u^+,v = 8~b^3Π_(Ou), v = 14) Molecular Collision System

Interference Angle on Quantum Rotational Energy Transfer in Na+Na_2 (A^1Σ_u^+,v = 8~b^3Π_(Ou), v = 14) Molecular Collision System
下载PDF
导出
摘要 In order to study the collisional quantum interference(CQI)on rotational energy transfer in atom-diatomsystem,we have studied the relation of the integral interference angle and differential interference angle in Na+Na_2(A^1Σ_u^+,v=8~b^3Π_(Ou),v=14)collision system.In this paper,based on the first-Born approximation of time-dependentperturbation theory and taking into accounts the anisotropic effect of Lennard-Jones interaction potentials,we present a theoretical model of collisional quantum interference in intramolecular rotational energy transfer,and arelationship between differential and integral interference angles. In order to study the collisional quantum interference (CQI) on rotational energy transfer in atom-diatom system, we have studied the relation of the integral interference angle and differential interference angle in Naq-Na2 (A1 ∑u^+,v=8-b^3∏0u,v=14) collision system. In this paper, based on the first-Born approximation of timedependent perturbation theory and taking into accounts the anisotropic effect of Lennard-Jones interaction potentials, we present a theoretical model of collisional quantum interference in intramolecular rotational energy transfer, and a relationship between differential and integral interference angles.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第12期1062-1066,共5页 理论物理通讯(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No.10374040 the Foundation of the Educational Department of Liaoning Province under Grant Nos.2008290 and 20060347
关键词 分子能量转移 碰撞系统 量子干涉 干涉角 钠分子 转动 Born近似 Π rotation energy transfer, integral interference angle, differential interference angle, collision diameter
  • 相关文献

参考文献20

  • 1W.M. Gelbart and K.F. Freed, Chem. Phys. Lett. 18 (1973) 470.
  • 2M.H. Alexande, J. Chem. Phys. 76 (1982) 429.
  • 3J. Boissels, C. Boulet, D. Robert, and S. Green, J. Chem. Phys. 90 (1989) 5392.
  • 4K.T. Lorenz, D.W. Chandler, and J.W. Barr, Science 293 (2001) 2063.
  • 5M.T. Sun, J. Liu, and W.Z. Sun, Chem. Phys. Lett. 365 (2002) 244.
  • 6G.H. Sha, J.B. He, B. Jiang, and C.H. Zhang, J. Chem. Phys. 102 (1995) 2772.
  • 7X.L. Chen, G.H. Sha, B. Jiang, J.B. He, and C.H. Zhang, J. Chem. Phys. 105 (1996) 8661.
  • 8X.L. Chen, H.M. Chen, J. Li, et al., Chem. Phys. Lett. 318 (2000) 107.
  • 9H.M. Tian, M.T. Sun, and G.H. Sha, Phys. Chem. Chem. Phys. 4 (2002) 5123.
  • 10R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, and D.L. Albritton, J. Mol. Spectrosc. 46 (1973) 37.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部