期刊文献+

分数阶四元数傅立叶变换及其应用

Fractional Quaternion Fourier Transform and Its Applications
下载PDF
导出
摘要 在缩减双四元数代数系统上定义了分数阶四元数傅立叶变换.这一变换可以看成是缩减双四元数傅立叶变换的推广.同时推导了分数阶四元数傅立叶变换的帕塞瓦尔定理和卷积定理,给出了分数阶四元数傅立叶变换的快速算法,最后讨论了分数阶四元数傅立叶变换域滤波器的设计. In this paper,we define the fractional quaternion Fourier transform based on reduced biquaternion algebra.The fractional quaternion Fourier transform can be seen as the generalization of reduced biquaternion Fourier transform.Moreover,the Parseval s theorem and convolution theorem associated with fractional quaternion Fourier transform was derived.Besides,the fast algorithms of fractional quaternion Fourier transform was given.In the end,the design of multiplicative filter was proposed in this paper.
出处 《淮阴师范学院学报(自然科学版)》 CAS 2009年第3期182-186,共5页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 分数阶四元数傅立叶变换 卷积 乘性滤波 fractional quaternion Fourier transform convolution multiplicative filter
  • 相关文献

参考文献14

  • 1Ozaktas H M, Kutay M A, Zalevsky Z. The Fractional Fourier Transform with Applications in Optics and Signal Processing [M]. New York, Wiley, 2001, 223- 446.
  • 2Jin W, Ma L, Yah C. Real color fractional Fourier transform holograms [J]. Optics Communications, 2006, 259: 513- 516.
  • 3Barshan B, Ayruly B. Fractional Fourier transform pre-processing for neural networks and its application to object recognition [J]. Neural Networks, 2002, 15:131 - 140.
  • 4Zayed A I. Hilbert transform associated with the fractional Fourier transform [J]. IEEE Trans Signal Processing Letters, 1998, 5: 206- 208.
  • 5Xu G L, Wang X T, Xu X G. Fractional quatemion Fourier transform, convolution and correlation [J]. Signal Processing, 2008, 88: 2511-2517.
  • 6Schtte H D, Wenzel J. Hypercomplex numbers in digital signal processing [J]. IEEE Int Symp, Circuits Syst, 1990, 2:1557 - 1560.
  • 7Bulow T, Sommer G. Hypercomplex signals-A novel extension of the analytical signal to the multidimensional ease[ J]. IEEE Trans Signal Processing, 2001, 49: 2844- 2852.
  • 8Dimitrov V S, Cookler T V, Donevsky B D. On the multiplication of reduced biquaternions and applications [J]. Inform Process Letters, 1992, 43: 161- 164.
  • 9Pei S C, Chang J H, Ding J J. Commutative reduced biquatemions and their Fourier transform for signal process and image processing applications [J]. IEEE Trans Signal Processing, 2004, 52:2012 - 2031.
  • 10Sangwine S J. Fourier transforms of color images using quaternion or hypercomplex numbers [J]. Electron Lett, 1996, 32:1979 - 1980.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部