期刊文献+

非接触式扫描离子电导显微镜技术在探测活体细胞表面微结构中的应用 被引量:5

Non-contact scanning ion conductance microscopy for high-resolution morphological imaging of live cells
下载PDF
导出
摘要 扫描离子电导显微镜技术是在纳米尺度进行非导电的生物样品成像的一种新型扫描探针显微镜技术。通过成功制备扫描离子电导显微镜扫描探测用纳米尺度玻璃微探针,对其进行了功能性评估;而后通过绘制探针-样品接近曲线,阐述了扫描离子电导显微镜技术实现非接触高分辨率探测的工作原理;最后采用该显微镜技术对导电标准样品及活体肾上皮A6细胞进行了表面形貌扫描成像,并与A6细胞表面形貌的扫描电镜图像进行了对照。结果表明,扫描离子电导显微镜技术不仅可实现导电样品的扫描成像,而且适宜于在生理条件下、非接触式地研究活体细胞表面的三维形貌,从而为人们深入研究细胞表面微观结构与生理功能提供了全新的技术手段。 As a new kind of scanning probe microscopy, scanning ion conductance microscopy (SICM) is designed for imaging non-conducting biological sample at the nanometer scale. Firstly, nanometer scale glass micropipettes were pulled successfully, and were functionally evaluated. Secondly, a micropipette-sample approaching curve was obtained for describing the working principle of SICM. Finally, SICM was used to scan the morphology of a conductive standard sample and live renal epithelial A6 cells. The topography of A6 cells monolayer was verified with Scanning Electron Microscopy (SEM) observation. As a result, non-contact SICM can be used not only for scanning conductive samples, but also for acquiring 3D morphological image of non-conducting living cells. It provides a powerful tool for in-depth studying the relationship between the cell membrane mierostructures and their physiological functions.
出处 《电子显微学报》 CAS CSCD 北大核心 2009年第5期489-494,共6页 Journal of Chinese Electron Microscopy Society
基金 国家自然科学基金重点项目(No.10832012) 天津市应用基础及前沿技术研究计划(No.08JCYBJC26500)
关键词 扫描离子电导显微镜技术 纳米生物学 肾上皮细胞 SICM nanobiology renal epithelial cells
  • 相关文献

参考文献12

  • 1Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Phys Rev Lett, 1986,56:930 - 933.
  • 2韩立,韩冬,王秀凤,陈皓明.扫描探针显微镜进行细胞扫描时探针对于细胞活性的影响[J].电子显微学报,2003,22(2):92-96. 被引量:6
  • 3Hansma P K, Drake B, Marti O, et al. The scanning ionconductance microscope [ J ]. Science, 1989, 243 : 641 - 643.
  • 4Korchev Y E, Milovanovic M C, Bashford L D, et al. A specialized scanning ion-conductance microscope for imaging of living cells[J] . J Microsc, 1997,188 : 17 - 23.
  • 5Korchev Y E, Bashford C L, Milovanovic M C, et al. Scanning ion conductance microscopy of living cells [ J ]. Biophys J, 1997,73:653 - 658.
  • 6Klenerman D, Korchev Y. Potential biomedical applications of the scanned nanopipette[J]. Nanomedicine,2006,1(1) : 107- 114.
  • 7张彦军.扫描离子电导显微镜技术及其在纳米生物学研究中的应用[J].现代仪器,2008,14(3):1-3. 被引量:4
  • 8Gorelik J, Zhang Y, Shevehuk A I, et al. The Use of scanning ion conductance microscopy to image A6 cells[J]. Mol Cell Endocrino1,2004,217 ( 1 - 2) : 101 - 108.
  • 9白春礼,商广义.扫描探针显微镜[J].现代科学仪器,1994(4):3-5. 被引量:10
  • 10Sanchez D, Johnson N, Li Ch, et al. Non-contact measurement of the local mechanical properties of living ceils using pressure applied via a pipette [J]. Biophys J, 2008,95 : 3017 - 3027.

二级参考文献30

  • 1白春礼.弹道电子发射显微术[J].真空科学与技术学报,1991,22(4):211-222. 被引量:3
  • 2吴浚瀚,成英俊,戴长春,黄桂珍,谢有畅,龚立三,白春礼.激光检测原子力显微镜的研制[J].科学通报,1993,38(9):790-792. 被引量:9
  • 3Colton Richard J,Baselt David R,Dufrêne Yves F,Green John-Bruce D ,Lee Gil U. Scanning probe microscopy[J]. Chemical Biology,1997,l1(3):370-3 77.
  • 4Catherine G Galbraith,Michael P Sheetz. Forces on adhesive contacts a ffect cell function[J]. Cell Biology,1998,10:566-571.
  • 5Binnig G, Quate CF, and Gerber C. Atomic force microscope. Phys. Rev. Lett. 1986, 56:930-933.
  • 6Hansma PK, Drake B, Marti O, et al. The scanning ion- conductance microscope. Science. 1989, 243:641-643.
  • 7Korchev YE, Bashford CL, Milovanovic MC, et al. Scanning ion conductance microscopy of living cells. Biophys. J. 1997, 73:653-658.
  • 8Korchev YE, Milovanovic MC, Bashford LD, et al. A specialized scanning ion-conductance microscope for imaging of living cells. J. Microsc. 1997, 188: 17-23.
  • 9Klenerman D and Korchev Y. Potential biomedical applications of the scanned nanopipette. Nanomedicine. 2006, 1(1):107-114.
  • 10Zhang Y, Gorelik J, Sanchez D, et al. Scanning Ion Conductance Microscopy reveals how a functional renal epithelial monolayer maintains its integrity. Kidney International. 2005, 68(3): 1071-1077.

共引文献15

同被引文献44

  • 1白春礼,商广义.扫描探针显微镜[J].现代科学仪器,1994(4):3-5. 被引量:10
  • 2王岳宇,赵学增.补偿压电陶瓷迟滞和蠕变的逆控制算法[J].光学精密工程,2006,14(6):1032-1040. 被引量:38
  • 3Tousson A, Alley CD, Sorscher EJ, Brinkley BR, Benos DJ. Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J Cell Sci 1989; 93 (Pt 2): 349-362.
  • 4Reinhardt J, Golenhofen N, Pongs O, Oberleithner H, Schwab A. Migrating transformed MDCK cells are able to structurally polarize a voltage-activated K^+ channel. Proc Natl Acad Sci USA 1998; 95(9): 5378-5382.
  • 5Angelides KJ. Fluorescently labeled Na^+ channels are localized and immobilized to synapses of innervated muscle fibres. Nature 1986; 321(6065): 63-66.
  • 6Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 1976; 260 (5554): 799-802.
  • 7Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981; 391(2): 85-100.
  • 8Korchev YE, Negulyaev YA, Edwards CR, Vodyanoy I, Lab MJ. Functional localization of single active ion channels on the surface of a living cell. Nat Cell Biol. 2000: 2(9): 616-619.
  • 9Gu Y, Gorelik J, Spohr HA, Shevchuk A, Lab MJ, Harding SE, Vodyanoy I, Klenerman D, Korchev YE. High-resolution scanning patch-clamp: new insights into cell function. FASEB J 2002; 16(7): 748-750.
  • 10Hansma PK, Drake B, Marti O, Gould SA, Prater CB. The scanning ion-conductance microscope. Science 1989; 243 (4891): 641-643.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部