期刊文献+

基于MF-DFA的中国股票市场多标度特性及成因分析 被引量:22

The Analysis of Multiscaling Characteristics and the Sources of Multiscaling of Stock Markets in China Using MF-DFA
下载PDF
导出
摘要 运用MF-DFA方法,对中国沪深两市股指收益时间序列的研究发现,股票市场存在明显的多标度特征。进一步对其多标度成因进行分析,通过对不同收益时间序列的多标度强度进行比较,发现股票市场的多标度特征是由两个因素共同作用的,其中收益序列的波动相关性起主导作用,是形成多标度特征的主要原因。 Using MF-DFA, this paper presents an empirical research on the stock price index time series in Shanghai and Shenzhen stock markets. It is found that the financial time series showed pronounced multisealing characteristics. Furthermore, this paper analyzes the sources of muhiscaling. It is found that there were two different types of sources for muhiscaling in time series, namely, fat-tailed probability distributions and nonlinear temporal correlations. Most muhiscaling of the data is due to different long-range correlations for small and large fluctuations.
出处 《管理工程学报》 CSSCI 北大核心 2009年第4期96-99,共4页 Journal of Industrial Engineering and Engineering Management
基金 国家自然科学基金资助项目(70901017 70871022 70771023) 中国博士后科学基金资助项目(20080441095)
关键词 MF-DFA方法 多标度 广义HURST指数 多标度强度 MF-DFA method muhiscaling generalized burst exponents strength of multiscaling
  • 相关文献

参考文献13

  • 1Du GX, Ning XX. Muhifractal properties of Chinese stock market in Shanghai[J]. Physica A, 2008, 387(1) :261 - 269.
  • 2Norouzzadeh P, Rahmani B. A muhifractal detrended fluctuation description of Iranian riM-US dollar exchange rate [ J]. Physica A, 2006, 367: 328-336.
  • 3Zhao XX, Ramazan G. Scaling, self-similarity and muhifractality in FX markets[J]. Physica A, 2003, 323: 578-590.
  • 4Mulligan RF, Lombardo GA. Maritime businesses: Volatile stock prices and market valuation inefficiencies[J]. The Quarterly Review of Economics and Finance, 2004, 44(2) : 321 - 336.
  • 5Ho DS, Lee CK. Scaling characteristics in the Taiwan stock market [J]. Physica A, 2003, 332(2) : 448 - 460.
  • 6Budaev VP. TurbuLence in magnetized plasmas and financial markets: comparative study of multifractal statistics[ J ], Physica A, 2004, 344 (1-2) : 299 - 307.
  • 7卢方元.中国股市收益率的多重分形分析[J].系统工程理论与实践,2004,24(6):50-54. 被引量:50
  • 8Ausloos M, Ivanovab K. Multifractal nature of stock exchange prices [ J ]. Computer Physics Communications, 2002, 147 (1) : 582 - 585.
  • 9Andreadis J, Serletis A. Evidence of a random multifractal turbulent structure in the Dow Jones Industrial Average[J]. Chaos, Solitons and Fraetals, 2002, 13:1309 - 1315.
  • 10Kantelhardt JW, Zschiegner SA, Koseielny-Bunde E, et al. Muhifractal detrended fluctuation analysis of nonstationary time series [J]. Physica A, 2002, 316(1 -4): 87- 114.

二级参考文献33

  • 1卢方元.中国股市收益率的多重分形分析[J].系统工程理论与实践,2004,24(6):50-54. 被引量:50
  • 2施锡铨,艾克凤.股票市场风险的多重分形分析[J].统计研究,2004,21(9):33-36. 被引量:30
  • 3黄超,吴清烈,武忠,朱扬勇.基于方差波动多重分形特征的金融时间序列聚类[J].系统工程,2006,24(6):100-103. 被引量:13
  • 4[1]Barabasi A L, Vicsek T. Multifractality of self-affine fractals[J]. Phys Rev A, 1991, 44:2730-2733.
  • 5[2]Peitgen H O, Jurgens H, Saupe D. Chaos and Fractals[M]. New York: Springer, 1992 (Appendix B).
  • 6[3]Bacry E, Delour J, Muzy J F. Multifractal random walks[J]. Phys Rev E, 2001, 64:026103-026106.
  • 7[4]Ivanov P Ch, Amaral L A N, Goldberger A L, et al. Multifractality in human heartbeat dynamics[J]. Nature,1999,399:461-465.
  • 8[5]Amaral L A N, Ivanov P Ch, Aoyagi N, et al. Behavioral-independent features of complex heartbeat dynamics Phys[J]. Rev Lett, 2001, 86:6026-6029.
  • 9[6]Silchenko A, Hu C K. Multifractal characterization of stochastic resonance[J]. Phys Rev E, 2001, 63:041105-041115.
  • 10[7]Kantelhardt J W, Stephan A Z, Eva K B, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316: 87-114.

共引文献65

同被引文献336

引证文献22

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部