期刊文献+

A-E方法的多目标车间排产方案精选决策 被引量:2

Multi-objective Shop Scheduling Scheme Well-Chosen Decision Making Based on A-E Method
原文传递
导出
摘要 分析车间排产方案决策阶段企业各部门利益关系,构建基于层次分析和熵理论(A-E)及欧氏范数的多目标车间排产方案决策模型。具体利用AHP法建立车间排产方案层次化的决策体系,采用层次分析法和熵理论(A-E)方法确定各决策因素的权重。在车间排产决策中,利用欧氏范数来描述备选排产方案与理想方案的距离大小作为精选的依据。并结合实例进行数值演算和验证,计算表明该模型能根据生产实际数据帮助决策者快速的从多个车间排产方案中精选,得到令各部门最满意的唯一方案。 Through analyzing the interest relationship of the each department in the phase of schemes decision making, the method based on A-E method and Euclid norm for multi-objective shop scheduling decision has been put forward. Firstly, a hiberarchy system for shop scheduling making decision was built by AHP method and a new weight-confirming method was obtained by combining both subjective factors and objective factors. Then, the distance between ideal scheme and selective scheme was illuminated by Euclid norm as a standard to select the best scheme. Finally, the application of model for selecting a provider has been demonstrated through an illustrative example. The results indicate that the most satisfied solution can be gained from the set of the scheduling schemes by using A-E method.
出处 《工业工程与管理》 北大核心 2009年第6期33-37,128,共6页 Industrial Engineering and Management
基金 教育部博士点基金(200802171023)
关键词 层次分析法 熵理论 欧氏范数 车间调度问题 多目标优化 analytic hierarchy process(AHP) entropy theory Euclid norm shop scheduling problem multi-objective optimization
  • 相关文献

参考文献6

二级参考文献34

  • 1邱丽绚.多目标决策中熵权模型[J].黎明职业大学学报,2003(3):67-70. 被引量:2
  • 2王美乂,张凤鸣,刘智.模糊信息的熵权多属性决策方案评估方法[J].系统工程与电子技术,2006,28(10):1523-1525. 被引量:37
  • 3王金根,刘贺普.基于熵权的模糊层次分析法在雷达情报质量评估系统中的应用[J].系统工程与电子技术,1996,18(6):9-14. 被引量:14
  • 4Kacem I, Hammadi S, Borne P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems[J]. IEEE Trans on Systems, Man, and Cybernetics,Part C,2002,32(1) : 1-13.
  • 5Kacem I, Hammadi S, Borne P. Pareto-optimality approach for flexible job-shop scheduling problems.hybridization of evolutionary algorithms and fuzzylogic[J]. Mathematics and Computers in Simulation,2002,60 (3-5) : 245-276.
  • 6Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc of the IEEE Int Conf on Neural Network[C]. Perth, 1995:1942-1948.
  • 7Shi Y, Eberhart R. Empirical study of particle swarm optimization [A]. Proc of Congress on Evolutionary Computation[C]. Washington, 1999.1945-1950.
  • 8Brandimarte P. Routing and scheduling in a flexible job shop by taboo search [ J]. Annals of Operations Research, 1993,41 (22) : 157-183.
  • 9Tung L F, Li L, Nagi R. Multi-objective scheduling for the hierarchical control of flexible manufacturing systems [J]. The Int J of Flexible Manufacturing Systems, 1999,11 (4) : 379-409.
  • 10中国人民解放军总装备部军事训练教材编辑工作委员会.国防系统分析方法[M].北京:国防工业出版社,2003..

共引文献166

同被引文献14

  • 1张进春,吴超,侯锦秀,黎敏.生产车间安全管理状况的区间数模糊综合评价方法研究[J].安全与环境学报,2006,6(2):135-138. 被引量:10
  • 2BEHNAMIAN J,GHOMI S F M T,ZANDIEH M.A multi-phase cov-ering Pareto-optimal front method to multi-objective scheduling in arealistic hybrid flow-shop using a hybrid meta-heuristic. ExpertSystems with Applications . 2009
  • 3FENG Ming-yue,TANG Shao-xun,LI Huaet al.Orthogonal particleswarm optimization for multi-objective Job-Shop scheduling problems. Proc of the 2nd International Conference on Computational In-telligence and Natural Computing . 2010
  • 4Ruiz,Ruben.The hybrid flowshop scheduling problem. European Journal of Operational Research . 2010
  • 5Erwin Pesch,Malgorzata Sterna.Late work minimization in flow shops by a genetic algorithm. Computers and Industrial Engineering . 2009
  • 6Betul Yagmahan,Mehmet Mutlu Yenisey.A Multi-objective Ant Colony System Algorithm for Flow Shop Scheduling Problem. Expert Systems With Applications . 2010
  • 7Framinan J,Leisten R.A heuristic for scheduling a permutation flowshop with makespan objective subject to maximum tardiness. International Journal of Production Economics . 2006
  • 8祁荣宾,钱锋,杜文莉,颜学峰.基于精英选择和个体迁移的多目标遗传算法[J].控制与决策,2007,22(2):164-168. 被引量:28
  • 9申晓宁,郭毓,陈庆伟,胡维礼.一种保持群体多样性的多目标遗传算法[J].控制与决策,2008,23(12):1435-1440. 被引量:10
  • 10张永弟,杨光,岳彦芳.机械加工车间的MES性能分析与综合评价模型研究[J].制造业自动化,2009,31(5):53-55. 被引量:7

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部