期刊文献+

双足机器人行走稳定性研究 被引量:4

Walking stability in bipedal robots
下载PDF
导出
摘要 双足机器人行走的稳定性是双足行走最为重要的衡量指标之一.针对传统的基于零力矩点(ZMP)步态稳定性判据方法,分析了ZMP、COP的相互关系,表明在双足机器人与水平地面无粘性力和无吸附力作用下,其ZMP即为压力中心点COP.基于具有足趾关节的双足机器人足底支撑面多种变化,提出对多点接触时支撑多边形区域描述.结合ZMP/COP、COG的在支撑面内相对位置,提出了基于ZMP/COP、COG的综合稳定性判据.经仿真分析,与传统单一的ZMP稳定性判据相比,该综合稳定性判据能够更为准确地反映步态的稳定性. Stable walking is one of the most important measurement indexes for the movement of bipedal robots. After reviewing the traditional gait stability criterion based on zero moment point (ZMP), the authors analyzed the relationship between ZMP and the center of pressure (COP) , and concluded that the ZMP of a bipedal robot is the COP of that bipedal robot if there is neither viscous force nor adsorption force between the biped robot and its horizontal footing. After analyzing differences in humanoid walking gaits caused by differences in supporting surfaces, the authors proposed a method for describing the supporting surface in a way that satisfies regional descriptions of support polygons under conditions of multipoint contact. Based on comprehensive consideration of the position of ZMP/COP and the center of gravity (COG) in the supporting surface, criteria for comprehensive stability were put forward. The results of simulations and experiments show that this method is more accurate than traditional criteria for comprehensive evaluation of a gait's stability.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第11期1285-1290,共6页 Journal of Harbin Engineering University
关键词 双足机器人 行走稳定性 综合稳定性判据 支撑区域描述 biped robot walking stability comprehensive stability criterion support area description
  • 相关文献

参考文献8

  • 1CHESTNUTT J, LAU M, CHEUNG G, KUFFNER J, HODGINS J. Footstep planning for the Honda ASIMO humanoid [ C ]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005.
  • 2ENDO G, NAKANISHI J, MORIMOTO J, CHENG G. Experimental Studies of a neural oscillator for biped locomotion with QRIO [ C ]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005.
  • 3NISHIWAKI K, KAGAMI S, KUNIYOSHI Y, INABA M, INOUE H. Toe joints that enhance bipedal and fullbody motion of humanoid robots [ C ]//Proceedings of the 2002 IEEE International Conference on Robotics & Automation. Washington DC, 2002.
  • 4赵晓军,黄强,彭朝琴,张利格,李科杰.基于人体运动的仿人型机器人动作的运动学匹配[J].机器人,2005,27(4):358-361. 被引量:34
  • 5VUKOBRATOVIC M. Zero moment point, thirty five years of its life [ J ]. International Journal of Humanoid Robotics, 2004, 1 (1): 157-173.
  • 6KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by using preview control of zeromoment point [ C ]//Proceedings of the IEEE International Conference on Robotics and Automation. Taipei, 2003: 14- 19.
  • 7GOSWAMI A. Postural stability of biped robots and the foot-rotation indicator (FRI) point [ J ]. The International Journal of Robotics Research, 1999, 18(6) : 523-533.
  • 8YIN C, ALBERS A, OTTNAD J, HAUBLER P. Stability maintenance of a humanoid robot under disturbance with fictitious zero-moment point (FZMP) [ C ]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton,Canada,2005 : 3149-3156.

二级参考文献9

  • 1Vukobratovic M, Juricic D. Contribution to the synthesis of biped gait[J]. IEEE Transactions on Biomedical Engineering. 1969, BME -16 (1): 1-6.
  • 2Gubina F, Hemami H, McGhee R B. On the dynamic stability of biped locomotion[J]. IEEE Transactions on Biomedical Engineering,1974, BME-21(2): 102-108.
  • 3Takanishi A, Toshizawa M, et al. Dynamic biped walking stabilized with optimal trunk and waist motion[ A]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[ C ].Tsukuba, Japan: IEEE, 1989. 187 - 192.
  • 4Hiraik K, Hirose M. The development of Honda humanoid robot[A]. Proceedings of the IEEE International Conference on Robotics and Automation[ C]. Lcuven, Belgium: IEEE, 1998. 1321 - 1326.
  • 5Huang Q, Yokoi K, Kajita S, et al. Planning walking patterns for a biped robot [ J ]. IEEE Transactions on Robotics and Automation,2001, 17(3) :280-289.
  • 6Pollard S, Hodgins J K, Riley M J, et al. Adapting human motion for the control of a humanoid robot [ A ]. Proceedings of the 2002IEEE International Conference on Robotics and Automation [ C ].USA: IEEE, 2002. 1390-1397.
  • 7Yamane K, Nakamura K. Dynamics filter - concept and Implementation of on-line motion generator for human figures[ J]. IEEE Transactions on Robotics and Automation, 2003, 19(3) :421 -432.
  • 8Nakazawa A, Nakaoka S, Ikeuchi K, et al. Imitating human dance motions through motion structure analysis [ A ]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems[C]. USA: IEEE, 2002. 2539-2544.
  • 9Nakaoka S, Nakazawa A, Yokoi K, et al. Generating Whole Body Motions for a Biped Humanoid Robot from Captured Human Dance[A]. Proceedings of the IEEE International Conference on Robotics and Automation [C]. USA: IEEE, 2003. 3905 -3910.

共引文献33

同被引文献26

  • 1欧阳自远.月球探测的进展与中国的月球探测[J].地质科技情报,2004,23(4):1-5. 被引量:34
  • 2陈峰,费燕琼,赵锡芳.机器人的阻抗控制[J].组合机床与自动化加工技术,2005(12):46-47. 被引量:15
  • 3魏航信,刘明治,赵丽琴.仿人机器人跑步运动的仿真[J].系统仿真学报,2007,19(2):396-399. 被引量:5
  • 4David D, Atkinson J. The lunar precursor robotic pro- gram[C]//Proceedings of 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2007: 1-6.
  • 5Megebee J R, Stubbs M. Experimental validation of a landing-dynamics computer program for legged spacecraft landers [R]. NASA-TND-7301, Washington: NASA, 1973.
  • 6George A. Z, JR, Harold H. D. A mathematical proce- dure for predicting the touchdown dynamics of a soft-land- ing vehicle[R]. NASA-TN-D-7045, Washington: NASA, 1971.
  • 7Harold D S. Apollo experience report guidance and control system: Lunar module stabilization and control system [R]. NASA-TN-D-8227, Washington: NASA, 1975.
  • 8Masahiro N. Modeling for lunar lander by mechanical dy- namics[C]//AIAA Modeling and Simulation Technologies Con{erenee and Exhibit. Jersey: 2005.
  • 9Li K, Liu R Q, Jiang S, et al. Research on rocker-style elevator with strong lunar surface adaptability[J]. Ap- plied Mechanics and Materials, 2010, 37-38: 1076-1081.
  • 10刘荣强,邓宗全,李奎.星球探测车释放用摇臂式着陆梯:中国,ZL200810064607.0[P].2009-12-16.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部