期刊文献+

烧结温度对纳米复相SmFeO_3/γ-Fe_2O_3材料组织结构及磁性的影响

Effect of Sintering Temperature on the Microstructure and Magnetic Properties of SmFeO_3/γ-Fe_2O_3 Nanocomposites
下载PDF
导出
摘要 采用溶胶-凝胶法制备了纳米晶SmFeO3/γ-Fe2O3复合粉体,然后经压制和高温烧结制备了SmFeO3/γ-Fe2O3块体样品。研究了烧结温度对样品组织结构与磁性能的影响,结果表明,干凝胶经450℃预烧后,粉体样品中出现SmFeO3相,但仍有部分非晶相存在。烧结温度对块体材料晶粒尺寸及磁性能有着显著的影响,在保温时间为1h的情况下,当烧结温度从800℃升高到1100℃时,烧结块体中SmFeO3和γ-Fe2O3两相的平均晶粒尺寸分别由51nm和48nm长大到79nm和76nm,样品致密度由56%增大到72%,比饱和磁化强度从51A.m2/kg升高到76A.m2/kg,矫顽力从215kA/m下降到187kA/m。 SmFeO3/γ-Fe2O3 nano-powder was prepared by sol-gel method, and then the bulk magnet samples were fabricated by suppression molding and sintering. The influence of sintering temperature on microstructures and magnetic properties of the samples were investigated. The experimental results indicated that the SmFeO3 phase is formed after xerogels are preheated at 450℃, however, there are still some amorphous phase in the sample. The sintering temperature has a significant influence on the grain size and the magnetic properties of the nano-composite. When increasing the sintering temperature from 800℃ to 1100℃ for 1 h, the average grain size of SmFeO3 and γ-Fe2O3 increases from 5 lnm to 79nm and 48nm to 76nm, respectively, the relative density of the samples increases from 56% to 72%, and the saturation magnetization of the samples increases from 5 1A·m2/kg to 76A·m2/kg while the coercivity force decreases from 215kA/m to 187kA/m.
出处 《磁性材料及器件》 CSCD 北大核心 2009年第6期15-18,共4页 Journal of Magnetic Materials and Devices
关键词 SmFeO3/γ-Fe2O3复合磁体 溶胶-凝胶法 烧结温度 纳米晶 结构 磁性能 SmFeO3/γ-Fe2O3 composite magnets sol-gel sintering temperature: nanocrystalline microstructure magnetic properties
  • 相关文献

参考文献9

  • 1Rajendran M, Bhattacharya A K. Nanocrystalline orthoferrite powders: synthesis and magnetic properties [J]. J Magn Magn Mater, 2006, 26(16): 3675-3679.
  • 2车如心,高宏,赵宏滨.溶胶-凝胶法制备纳米复合永磁材料及其磁性(英文)[J].功能材料,2006,37(1):146-149. 被引量:5
  • 3Viart N, Hassan S R, et al. Exchange coupling in CoFe2O4/CoFe2 bilayers elaborated by pulsed laser deposition [J]. J Magn Magn Mater, 2004, 279(1): 21-26.
  • 4Jiles D C. Recent advances and future directions in magnetic materials [J]. Acta Materialia, 2003, 51(19): 5907- 5939.
  • 5董照远,朱明原,金红明.NdFeB纳米晶双相复合永磁材料研究进展[J].材料科学与工程学报,2003,21(3):441-445. 被引量:20
  • 6Goll D, Kronmuller H, et al. High-performance permanent magnets [J]. Naturwissenschaften, 2000, 87( 10) 423-438.
  • 7Gutfleisch O, Bollero A, Handstein A, et al. Nanocrystalline high performance permanent magnets[J]. J Magn Magn Mater, 2002, 242/245(2): 1277-1282.
  • 8李忭,张敏刚.纳米晶复合永磁材料研究进展[J].稀有金属快报,2004,23(4):8-11. 被引量:7
  • 9Tebble R S, Craik D J (北京冶金研究所翻译组译)磁性材料[M].北京:科学出版社,1979.332-386.

二级参考文献23

  • 1[1]Coeboom R,Mooij D B,Ward C D.J Magn Magn Mater[J],1989,80:101
  • 2[3]Emura M,Gonzra'lez J Mand Missell F P.IEEE Trans on Mag [J],1997,33:3892~3894
  • 3[4]Kronmüller H,Fischer R,Zerm A.et al.J Phys D:Appl Phys[J],1996,29:2274~2578
  • 4[5]Betancount J I,Davies H A.J Appl Phys[J],1999,85:5911~5915
  • 5[6]Chen Zhongmin,Hideyuki Okumura,et al.J Alloys Comp [J],2001,327(1~2):201~205
  • 6[7]Yamasaki M,Hamano M,Mizuguchi H,et al.J Scripta Mater [J],2001,44:1375~1378
  • 7[8]Jakubowicz J,Jurczyk M,Handstein A et al.J Magn Mater[J],2000,208:163~168
  • 8[9]Jezierska E,Kaszuwra W.IEEE Trans on Mag[J],1994,30:580~583
  • 9[10]Jin Z Q,Okumura H and Zhang Y,et al.J Magn Mater [J],2002,248(2):216~222.
  • 10[11]Yang Sen,Song Xiaoping.Li Shandong,et al.J Magn Magn Mater[J],2003,263(1~2):134~140

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部