期刊文献+

基于声表面波的微型液滴雾化器技术 被引量:2

Technology of Micro Droplet Atomizers Based on Surface Acoustic Wave
下载PDF
导出
摘要 采用微细加工技术在127.8°YX型LiNbO3压电基底上制造出周期为400μm的铜叉指结构的微型雾化器。该雾化器利用声表面波(SAW)对液滴表面产生的表面张力波作用实现对液滴的雾化。对叉指结构(IDT)周期长度的确定和器件的制作工艺进行了详细说明。利用对液滴驱动速度的测定得出了该雾化器的实际中心频率,并指出实际中心频率与理论值存在差异的原因。得出雾化微粒直径与叉指结构周期之间的关系,并计算得出在施加驱动频率为10.1MHz、功率为24W的电信号时,其雾化颗粒直径为2.61μm,雾化速度达到了1μL/s。 The micro-atomizer with a copper interdigital transducer (IDT) was fabricated on a 127.8°YX-type LiNbO3 substrate by micro-processing technology. The droplet can be atomized by the micro-atomizer through the capillary wave induced by the surface acoustic wave (SAW). The cycle length of the IDT and the production process of the devices were described in detail. The actual center frequency of the atomizer was obtained by determination of the droplet speed, and the reasons of the difference between the theoretical frequency and the actual frequency were pointed out. The relationship between the diameter of the particle and the cycle length of the IDT was gotten. The results show that the diameter of the particle is 2.61 μm and the speed of the atomization is 1 μL/s with the applied frequency of 10.1 MHz and the power of 24 W.
出处 《微纳电子技术》 CAS 北大核心 2009年第12期726-729,共4页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(60777016) 上海市浦江人才计划资助项目(09PJ1406200) 科技部国际合作项目(2009DFB10330) 航空重点实验室基金资助项目(20080857002)
关键词 微细加工技术 雾化器 声表面波 叉指换能器 微粒 micro-processing technology atomizer surface acoustic wave interdigital transducer particle
  • 相关文献

参考文献12

  • 1KUROSAWA M, WATANABE T, FUTANMI A. Surface acoustic wave atomizer with pumping effect [J]. Sensors and Actuators: A, 1995, 50 (1): 69-74.
  • 2AGU R U, UGWOKE M I, ARMAND M, et al. The lung as a route for systemic delivery of therapeutic proteins and peptides [J]. Respiratory Research, 2001, 2 (4): 198-209.
  • 3刘忠华,刘贻尧,杨红.超声空化效应和超声微泡在生物医学中的应用[J].生物技术通讯,2008,19(3):475-478. 被引量:19
  • 4LI H, FRIEND J R, YEO L Y. A scaffold cell seeding method driven by surface acoustic waves [J]. Biomaterials, 2007, 28 (28): 4098-4104.
  • 5WHITE R M, VOLTMER F M. Direct piezoelectric coupling to surface elastic waves [J]. Applied Physics Letters, 1965, 314 (7): 314-316.
  • 6GUTTENBERG Z, RATHGEBER A, KELLER S, et al. Flow profiling of a surface-acoustic-wave nanopump [J]. Physical Review, 2004, 70 (1): 1- 10.
  • 7LI H, FRIEEND J R, YEO L Y. Surface acoustic wave concentration of particle and bioparticle suspensions [J]. Biomed Microdevices, 2007, 9 (1): 647-656.
  • 8RICHARD S, TAN M K. Particle concentration and mixing in microdrops driven by focused surface acoustic waves [J]. Journal of applied physics, 2008, 104 (1):014910.
  • 9JAMES R F, LESLIE Y Y, DIAN R A, et al. Evaporative self-assembly assisted synthesis of polymeric nanopartieles by surface acoustic wave atomization [J]. Nanotechnology, 2008, 19 (14): 145301.
  • 10长濑和幸.新的SAW器件的超声波雾化法的研究[M].东京:东京工业大学出版社,2002:18-19.

二级参考文献37

  • 1朱栋晓.高强度聚焦超声治疗肿瘤的研究进展[J].实用临床医药杂志,2005,9(5):39-41. 被引量:14
  • 2Frizzell W L A. Biological effects of acoustic cavitation in ultrasound: its chemical, physical, and biological effects[M]//Suslick K S. Ultrasound: Its Chemical, Physical, and Biological Effects. New York: VCH Publishers, 1988: 287-303.
  • 3Castensen E L Mechanisms for biological effects of ultrasound[M]///Proceed- ings 16th ICA 98. Washington: Seattle, 1998:1437-1438.
  • 4Liu Y, Uno H, Takatsukl H, et al. Interrelation between HeLa-S3 cell transfection and hemolysis in red blood cell suspension using pulsed ultrasound of various duty cycles[J]. Eur Biophys J, 2005,34:163-169.
  • 5Lawrie A, Bfisken A F, Francis S E, et al. Microbubble-enhanced ultrasound for vascular gene delivery[J]. Gene Ther, 2000,7:2023-2027.
  • 6Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotidartery using ultrasound[J]. Circulation, 2002,105:1233-1239.
  • 7Skyba D M, Price R J, Linda A Z, et al. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its effects on tissue[J]. Circulation, 1998,98:290-293.
  • 8Price R J, Skyba D M, Kaul S, et al. Delivery of colloidal particles and red blood cells to tissue through microvessel ruputures created by targeted microbubble destruction with ultrasound[J]. Circulation, 1998,98:1264-1267.
  • 9Apfel R E, Holland C g. Gauging the likelihood of cavitation from short pulse, low duty cycle diagnostic ultrasound[J]. Ultrasound Med Biol, 1991,17: 179-185.
  • 10Mukherjee D, Wong J, Griffin B, et al, Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration[J]. J Am Coll Cardiol, 2000,35:1678-1686.

共引文献18

同被引文献21

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部