期刊文献+

声表面波谐振器传播状态的ANSYS仿真 被引量:3

ANSYS Simulation on the Dissemination State of SAW Resonators
下载PDF
导出
摘要 为描述声表面波的传播状态,利用ANSYS软件对声表面波(SAW)谐振器进行了仿真。在对声表面波产生机理和SAW谐振器工作原理分析的基础上,建立了SAW谐振器仿真模型,讨论了网格划分不同对仿真结果精度的影响,得出了在每个SAW波长尺寸内划分30~40个网格可以得到较精确的仿真结果。对不同长度声孔径的声表面波谐振器进行了仿真分析,得出了声表面波只在固体表面1~2个波长深度范围内传播的仿真效果图,与理论分析有很好的一致性。最后对IDT/ZnO/金刚石/Si结构的声表面波器件进行了仿真,得出该结构声表面波器件SAW传播速度与ZnO的厚度成反比,其大小是IDT/ZnO结构器件SAW传播速度的2~3倍。 The SAW resonator was simulated by ANSYS software to describe the dissemination state of the surface acoustic wave (SAW). Based on analysis of the SAW generated mechanism and working principle of SAW resonators, the simulation model of SAW resonators was established. The effect of the different meshes on the accuracy of simulation results was discussed. The simulation results show that more accurate results can be obtained in each size range of wavelength with 30-40 grids. The SAW resonators with different long acoustic apertures were analyzed, the simulation effect diagram of only 1 - 2 wavelength dissemination depth of SAW in the solid surface was gotten. The result is consistent with the theoretical analysis. The SAW devices with IDT/ZnO/Diamond/Si structures were simulated. The results show that the SAW propagation velocity is inversely proportional to the thickness of ZnO, and is 2 - 3 times that of the SAW devices with IDT/ZnO structures.
出处 《微纳电子技术》 CAS 北大核心 2009年第12期739-743,749,共6页 Micronanoelectronic Technology
基金 中国工程物理研究院科技发展基金重点课题(2008A0403016) 教育部访问学者基金资助项目(无编号)
关键词 RF MEMS SAW谐振器 叉指换能器(IDT) ANSYS软件 建模与仿真 RF MEMS SAW resonator interdigital transducer (IDT) ANSYS software modeling and simulation
  • 相关文献

参考文献6

  • 1董加和,杨成韬.镜像阻抗连接声表面波滤波器建模与仿真[J].系统仿真学报,2007,19(4):872-874. 被引量:2
  • 2章安良.声表面波器件PSPICE仿真研究[J].压电与声光,2007,29(4):373-375. 被引量:4
  • 3MORGAN P. A history of surface acoustic wave devices [J]. International Journal of High Speed Electronics and Systems, 2000, 10 (3) : 553-602.
  • 4ADLER E L. Bulk and surface acoustic waves in ansiotropic solids [J]. International Journal of High Speed Electronics and Systems, 2000, 10 (3): 673-682.
  • 5YONG Y K, KANNA S. Analysis of high velocity pseudosurface acoustic waves in quartz periodic structures with electrode fingers [C] //Proceedings of the Annual IEEE International Frequency Control Symposium. Kansas City, MO, USA, 2000: 301-306.
  • 6KANNAN T. Finite element analysis of surface acoustic wave resonators [D]. University of Saskatchewan, 2006: 15- 112.

二级参考文献10

  • 1Hikita M, Kojima H, Tabuchi T, et al. 800-MHz high-performance SAW filter using new resonant configuration [J]. IEEE Trans Microwave Theory Tech (S0018-9480), 1985, 33(6): 510-518.
  • 2Kojima T, Yabuno R. Equivalent four-port networks using force factors for SAW interdigital transducers [C]//in Proceedings of the 1994 IEEE Ultrasonics Symposium. Cannes, France. 1994.
  • 3WEN Yumei,LI Ping,YANG Jin,et al.Detecting and evaluating the signals of eirelessly interrogational passive SAW resonator sensors[J].IEEE Sensors Journal,2004,4(6):828-836.
  • 4GRONEWOLD T M A,BAUMGARTNER A,QUAN-DT E.Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor[J].Anal Chem,2006,78(15):4 865-4 871.
  • 5SHMALIY Yuriy S.Limiting phase errors of passive wireless SAW sensing with differential measurement[C].IEEE Sensors Journal,2004,4(6):819-827.
  • 6LEACH W M.Controlled-source analogous circuits and SPICE models for piezoelectric transducers[J].IEEE Transactions on Ultrasonics Ferroelectrics and Control,1994,41(1):60-66.
  • 7PUTTMER A,HAUPTMANN P,LUCKLUM R,et al.SPICE model for lossy piezoceramic transducers[J].IEEE Transactions on Ultrasonics Ferroelectrics and Control,1997,44(1):60-66.
  • 8RYDER J D.Networks,Line and Fields[M].Englewood Cliffs,N J:Prentice-hall,INC (second edition),1964:80-88.
  • 9杨磊,任天令,刘理天.镜像阻抗连接SAWF的Simulink建模和特性模拟[J].压电与声光,2001,23(2):89-91. 被引量:5
  • 10章安良,朱大中.Y型双声路声表面波质量传感器及其测量系统[J].压电与声光,2003,25(6):445-448. 被引量:8

共引文献3

同被引文献20

  • 1邓晔,李庆亮,韩韬,施文康.声表面波无线标签系统接收机的设计[J].传感技术学报,2006,19(3):839-842. 被引量:6
  • 2张朝晖.ANSYS11.0结构分析工程应用实例解析[M].北京:机械工业出版社,2008.
  • 3Nakahata H,Hachigo A, Higaki.K,et al. Theoretical study on SAW characteristics of layered structures including a diamond layer[J]. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control,1995,42(2): 362-366.
  • 4Hikita M,Kojima H,Tabuchi T.800MHz high-performance SAW filter using new resonant configuration[J].IEEE Trans. on Microwave Theory and Techniques, 1985, 33(6):510-518.
  • 5胡爱民.微声电子器件[M].北京:国防工业出版社,2008:70-71.
  • 6HUANG I Y, LEE M C, CHANG Y W. Development of a novel flexural plate wave biosensor for immunoglobulin-E detection by using SAM and MEMS technologies [C] //Pro ceedings of Sensors. Daegu, Korea, 2006:70- 73.
  • 7CUNNINGHAMB, WEINBERGM, PEPPER J. Design, fabri- cation and vapor characterization of a micro fabricated flexural plate resonator sensor and application to integrated sensor arrays [J]. Sensors and Actuators: B, 2000, 73:112- 123.
  • 8BUTLER M A, HILL K, SPATES J J, et al. Pressure sensing with a flexural plate wave resonator [J]. Applied Physics, 1999, 85 (3):1998-2000.
  • 9LEE J S, KIM Y C. Design and fabrication of a flexural plate wave accelerometer [J]. Key Engineering Materials, 2006, 326/327/328 : 241-244.
  • 10WEINBERG M S, CUNNINGHAM B T, CLAPP C W. Modeling flexural plate wave devices [J]. Microelectromeehanical Systems, 2000, 9 (3):370-378.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部