期刊文献+

(a,b,k)-临界图(英) 被引量:18

(a, b, k)-Critical Graphs
下载PDF
导出
摘要 设G是一个图且设a,b是非负整数,a<b.如果消去G的任意K个顶点剩下的图有[a,b]-因子,则称图G是(a,b,k)-临界图,本文给出了一个图是(a,b,k)-临界图的一个充分必要条件,讨论了该条件的一些应用,研究了(a,b,k)-临界图的性质。 Let G be a graph and let a, b be nonegative integers with a ≤b. Then graph G iscalled an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an[a, b]-factor. In this paper a necessary and sufficient condition for a graph to be (a, b, k)-critical isgiven. Some applications of this condition are discussed. Therefore the properties of (a, b, k)-criticalgraph are studied.
出处 《数学进展》 CSCD 北大核心 1998年第6期536-540,共5页 Advances in Mathematics(China)
关键词 因子 临界图 简单图 无向图 [a, b]-factor (a, b, k)-critical graph
  • 相关文献

参考文献3

  • 1Yu Q,Australas J Comb,1993年,7卷,55页
  • 2Heinrich K,Discret Math,1990年,85卷,315页
  • 3刘桂真,Discret Math

同被引文献49

  • 1马英红,刘桂真.图的分数因子与孤立韧度(英文)[J].应用数学,2006,19(1):188-194. 被引量:7
  • 2Heinrich K,Hell P,Kirkpartrick D G,et al.A simple existence criterion for (g,f)-factors[J].Discrete Mathematics,1990,85(3):315-317.
  • 3Zhou Sizhong,Xue Xiuqian.Complete-factors and (g,f)-covered graphs[J],Australasian Journal of Combinatorics,2007,37(1):265-269.
  • 4Zhou Sizhong,Xu Yang.Neighborhoods of independent sets for (a,b,k)-critical graphs[J].Bulletin of the Australian Mathematical Society,2008,77(2):277-283.
  • 5Zhou Sizhong,Jiang Jiashang.Notes on the binding numbers for (a,b,k)-critical graphs[J].Bulletin of the Australian Mathematical Society,2007,76(2):307-314.
  • 6Zhou Sizhong.Binding number conditions for (a,b,k)-critical graphs[J].Bulletin of the Korean Mathematical Society,2008,45 (1):53-57.
  • 7Li Jianxiang.A new degree condition for graph to have[a,b]-factor[J].Discrete Mathematics,2005,290(1):99-103.
  • 8Zhou Sizhong.Some sufficient conditions for graphs to have (g,f)-factors[J].Bulletin of the Australian Mathematical Society,2007,76(3):447-452.
  • 9Bondy J A,Murty U S R.Graph theory with applications[M].London:Macmillan,1976.
  • 10Lovasz L.Subgraphs with prescribed valencies[J].J Comb Theory,1970(8):391-416.

引证文献18

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部