期刊文献+

基于Matlab模拟的超细长弹性杆的数值仿真 被引量:5

Numerical simulation of super-long thin elastic rod and implementation of Matlab
下载PDF
导出
摘要 在提出弯扭线的基础上,用曲面回扫方法结合刚体有限转动的有关理论研究超细长弹性杆的空间结构及空间曲面图形的描绘,为分析弹性杆的自身接触问题和动力学性态的计算机数值仿真及其图形后处理提供了模型和算法的支持. Using Swept Volumes method, combining with limited rotation theory of rigid body, this paper stud- ies the elastic rod' s spatial structure, including the elastic rod' s spatial shape, depicts the surface figure of the rod, provides model and algorithm supprots for numerical simulation and post-processing of the numerical results, as well as studies the dynamical properties of the elastic rod.
出处 《重庆工商大学学报(自然科学版)》 2009年第6期533-537,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 宿州学院硕士科研启动基金项目(2008yss21)
关键词 弹性杆 数值仿真 模型和算法 刚体 elastic rod numerical simulation model and algorithm rigid body
  • 相关文献

参考文献7

  • 1SMITH S B, FINCI L, Bustamante C. Direct mechanical measurement of the elasticity of single DNA molecules by using magnetic beads[J]. Science, 1992, 258(5): 1122-1126.
  • 2BUSTAMANTE C, BRYANT Z, Ten years of tension : single-molecule D NA mechanics [ J ]. Nature, 2003,421:423-427.
  • 3MESIROV J P, SCHULTEN K, SUMNERS D W, Mathematical approaches to biomoleeular structure and dynamics [ M ]. New York : Springer, 1996.
  • 4赵维加,张光辉.超细长弹性杆动力学仿真的曲面处理算法[J].计算力学学报,2008,25(2):265-268. 被引量:3
  • 5LANGER J,SINGER D. Lagrangian aspects of the Kirchhoff Elastic Rod[ J]. AM Review, 1996,35 (4) :605-618.
  • 6DUNCAN M, Applied Geometry for Computer Graphics and CAD[ M]. Springer, 2000.
  • 7HAIRE E, WANNER G. Solving Ordinary Differential Equations Ⅱ: Stiff and Differential-Algebraic Problems 2nd ed [ M ]. New York: Springer-Verlag, 1996.

二级参考文献8

  • 1刘延柱.弹性细杆的非线性力学-DNA力学模型的理论基础[J].上海交通大学,2005,11-25.
  • 2SMITH S B,FINCI L, BUSTAMANTE C. Direct mechanical measurement of the elasticity of single DNA molecules by using magnetic beads[J]. Science,1992,258(5085):1122-1126.
  • 3BUSTAMANTE C, BRYANT Z. Ten years of tension: single-molecule DNA mechanics [J]. Nature, 2003,421:423-427.
  • 4MESIROV J P, SCHULTEN K, SUMNERS D W. Mathematical Approaches to Biomolecular Structure and Dynamics[M]. New York:Springer, 1996.
  • 5DUNCAN M. Applied Geometry for Computer Graphics and CAD[M]. Springer,2000.
  • 6YAOMING S,JOHN E H. The Kirchhoff elastic rod, the nonlinear Schrodinger equation, and DNA supercoiling[J]. J of Chem Phys, 1994, 101 (6) :5186- 5200.
  • 7BURDEN R L, FAIRE J D. Numerical analysis[J]. Thomson Learning Inc , 2001,646-688.
  • 8HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration[M]. Springer, 2002.

共引文献2

同被引文献49

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部