期刊文献+

变分不等式和非扩张映射的迭代收敛性 被引量:1

Iterative convergence of variational inequalities and non-expansive mappings
下载PDF
导出
摘要 介绍了一类包含非扩张映射的变分不等式和Wiener-Hopf方程,基于投影技巧推导出两者之间的等价关系,利用该等价关系提出了一个同步求解非扩张映射不动点和变分不等式的迭代算法,并在适当条件下证明了该迭代算法的强收敛性;所得结论推广了该领域内的一些最新结果. A class of variational inequalities including non-expansive mappings and Wiener-Hopf equation are introduced, based on projection technique, the equivalence relation between the two is deduced. On the basis of this equivalence relation, an iterative algorithm for synchronously solving non-expansive mappings'fixed points and variational inequalities is proposed. Under the proper condition, the strong convergence of this iterative algorithm is proven, and the corresponding conclusions generalize some new results in this field.
作者 龚黔芬
出处 《重庆工商大学学报(自然科学版)》 2009年第6期548-550,606,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 变分不等式 Wiener—Hopf方程 非扩张映射 Lipschitzian连续 松弛强制映射 variational inequalities Wiener-Hopf equation non-expansive mapping Lipschitzian continuity relaxed coercive mapping
  • 相关文献

参考文献8

  • 1SHI P. Equivalence of variational inequalities with Wiener-Hopf equations [ J]. Proc. Amer. Math. Soc. , 1991,111 : 339-346.
  • 2WENG X L. Fixed Point iteration for local strictly pseudocontractive mappings [ J ]. Proc. Amer. Math. Soc. , 1991,113:727-731.
  • 3NOOR M A, WANG Y J, XIU N. Some new projection methods for variational inequalities [ J ]. Appl. Math. Comput, 2003,137 : 423-435.
  • 4TAKAHASHI G,TOYODA M. Weak convergence theorems for nonexpansive mapping and monotone mappings [ J ]. Optim. Theory Appl, 2003,118(2) : 417-428.
  • 5NOOR M A, YAO Y H. Three-step for variational inequalities and nonexpansive mappings [ J ]. Appl. Math. Comput, 2007 (2) : 13.
  • 6NOOR M A, HUANG Z Y. Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings [ J ]. Appl. Math. Comput, 2007(2) : 117.
  • 7NOOR M A, RASSIAS T M. A class of projection methods for general variational inequalities [ J ]. Mathematical Analysis and Applications, 2002, 268:334-343.
  • 8许维珍.微积分在解方程和不等式中的应用[J].重庆工学院学报(自然科学版),2008,22(3):153-155. 被引量:2

二级参考文献4

共引文献1

同被引文献5

  • 1Stampaechia G. Formes bilineaires coercitives sur les ensem- bles convexes[J]. C R Acad Sci Paris, 1964,258:4413 - 4416.
  • 2Noor M A. Three - step methods for non - expansive mapping and variational inequalities [J]. Applied Mathematics and Computation,2007,87(2) :680 -685.
  • 3Neor M A. Wiener - Hopf equations and variational inequali- ties[J].J Optim Theory Appl,1993,79:197 -206.
  • 4Shi P. Equivalence of variational inequalities with Wiener - Hopf equations [ J ]. American mathematical society, 1991, 111 (2) :338 -346.
  • 5马乐荣,高兴慧.K-严格伪压缩映像不动点的粘滞算法[J].延安大学学报(自然科学版),2010,29(3):21-23. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部