摘要
对于某些d,若Q(d)是Euclid域,则在对应的Euclid整环中算术基本定理成立,利用此来证明不定方程x2+11=4y3没有整数解.
For some d, if Q(√d) is Euclid field , according to Euclidean domain Q (√d), arithmetical funda- mental theorem is carried out. This paper mainly uses the method to discuss the integer solution of diophantine equation x2+11=4y3 , and proves that the equation has no integer
出处
《重庆工商大学学报(自然科学版)》
2009年第6期551-552,共2页
Journal of Chongqing Technology and Business University:Natural Science Edition
关键词
不定方程
整数解
Euclid整环
diophantine equation
integer solution
Euclidean domain