摘要
本文证明了在L-domain条件下,连续B-domain与FS-domain等价,并由此得到了连续B-domain的一个刻划定理.
出处
《数学年刊(A辑)》
CSCD
北大核心
1998年第6期699-702,共4页
Chinese Annals of Mathematics
参考文献6
-
1Liu Y M,Top Appl,1996年,69卷
-
2Jung A,Logic in Computer Science,1990年
-
3Kamimura T,Lecture Notes in Computer Science,1986年,239页
-
4Jung A,CMI Tracts.66
-
5Jung A,On the duality of compact V S open
-
6Jung A,Uniform approximation of topological spaces
同被引文献14
-
1王习娟,徐罗山.FS-相容Domain的定向完备化及相关范畴性质[J].模糊系统与数学,2005,19(3):82-87. 被引量:7
-
2ABRAMSKY S, JUNE A. Domain theory[M]//ABRAMSKY S, GABBAY DOV M, MAIBAUM T S E. Handbook of Logic in Computer Science. Oxford: Clarendon Press, 1994: 1-168.
-
3GIERZ G, HOFMANN K H, KEIMEL K, et al. Continuous lattices and domains[M]. Berlin: Springer-Verlag, 2003.
-
4JUNG A, The classification of continuous domains[M]// Logic in Computer Science. California: IEEE Computer Society Press, 1990: 35-40.
-
5REINHOLD H. Characterising FS-Domain by means of power domains[J]. Theortical Computer Science, 2001(264) :195-203.
-
6MAO X X, XU L S. B-Posets, FS-Posets and relevant categories[J]. Semigroup Forum, 2006(72) : 121-133.
-
7HERRILICH H, STRECKER E. Category theory[M]. Berlin: Heldermann Verlag, 1979.
-
8Lawson J D,Mislove M.Domain theory and topology[A].van Mill J,Reed G M.Open Problems in Topology[C].Amsterdam:North-holland,1990.351-372.
-
9Abramsky S,Jung A.Domain theory[A].Abramsky S,Gabay D M,Maibaum E,et al.Handbook of Logic in Computer Science[M].NewYork:Springer-Verlag,1994.1-60.
-
10Gierz G,Hofmann K H,Keimel K,et al.A Compendium of Continous Lattices[M].New York:Springer-Verlag,1980.25-146.
二级引证文献6
-
1管雪冲.一些Scott连续自映射的不动点集的性质[J].徐州师范大学学报(自然科学版),2005,23(4):32-34. 被引量:2
-
2伍秀华,李庆国.半连续格的刻画和映射[J].Journal of Mathematical Research and Exposition,2007,27(3):654-658. 被引量:16
-
3张滦云,杨利群.Scott连续自映射不动点集的性质研究[J].苏州大学学报(自然科学版),2009,25(3):16-18.
-
4梁少辉,赵彬.强FS-Poset若干性质的研究[J].山东大学学报(理学版),2009,44(8):51-55. 被引量:1
-
5郭智莲,赵彬.相容Domain间Scott连续自映射的不动点[J].模糊系统与数学,2011,25(5):38-42. 被引量:1
-
6郭智莲,杨海龙.相容拟半连续Domain和相容交半连续Domain[J].山东大学学报(理学版),2012,47(2):104-108. 被引量:1