期刊文献+

具有逆断面的正则半群的同余的表示 被引量:2

Representation of Congruences on Regular Semigroups with Inverse Transversals
原文传递
导出
摘要 具有道断面S°的正则半群可表示为有Saito's结构的半群W(I,S°,Λ,*,α,β).我们利用由I,S°和Λ上的同余构成的所谓同余聚抽象地表示这类半群上的同余,进而给出了这类半群的同态象的构造法. For a regular semigroup with an inverse transversal S0, we have Saito's structure W(I, S°, A, *, α, β). We represented congruences on this kind of semigroups by the so called congruence assemblage abstractly which consist of congruences on the structure component parts I, S°and A. The structure of images of this type of semigroups is also presented.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1998年第6期1159-1164,共6页 Acta Mathematica Sinica:Chinese Series
基金 广东省自然科学基金
关键词 逆断面 同余 正则半群 同态象 半群 Inverse transversal, Congruence, Congruence assemblge
  • 相关文献

参考文献4

  • 1汪立民,Commun Algebr,1998年,26卷,1243页
  • 2唐西林,Semigroup Forum,1997年,55卷,24页
  • 3唐西林,Commun Algebr,1995年,23卷,4157页
  • 4汪立民,Semigroup Forum,1995年,50卷,141页

同被引文献47

  • 1Sche.,BM 岑嘉评.关于逆半群理论的起源与概况[J].数学译林,1994,13(4):296-301. 被引量:1
  • 2Almeida Satons M H. Inverse transversal congruence extensions. Comm. Algebra, 1998, 26(3): 889-898.
  • 3Blyth T S and McFadden R B. Natually ordered regular semigroups with a greatest idempotent. Proc. Roy.Soc. Edinburgh, 1981, 91A: 107-122.
  • 4Blyth T S and McFadden R B. Regular semigroups with a multiplicative inverse transversal. Proc. Roy.Soc. Edinburgh, 1982, 92A: 253-270.
  • 5Blyth T S and McFadden R B. On the construction of a class regular semigroups. J. Algebra, 1982, 81:1-22.
  • 6Blyth T B and Almeida Satons M H. On naturally ordered regular semigroups with biggest idempotent.Comm. Algebra, 1993, 21: 1761-1771.
  • 7Blyth T B and Almeida Satons M H. Amenable ordered on orthodox semigroups. J. Algebra, 1994, 109:49-70.
  • 8Blyth T B and Almeida Satons M H. On weaklly multiplicative inverse transversals. Proc. Edinburgh Math.Soc., 1994, 37: 91-99.
  • 9Blyth T B and Almeida Satons M H. Congruences associated with inverse transversal. Collect Math., 1995,46: 35-48.
  • 10Blyth T B and Almeida Satons M H. A simplistic approach to inverse transversals. Proc. Edinburgh Math.Soc., 1996, 39: 57-69.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部