期刊文献+

上三角矩阵代数的交叉模和三阶上同调群

Crossed Modules and Third Cohomology of Triangular Lie Algebras
下载PDF
导出
摘要 根据李代数的交叉模的定义,计算出上三角矩阵代数的交叉模等价类只有一个,相应的三阶上同调群平凡。 According to the definition of crossed modules of Lie algebras,it is proved that there is only one equivalent class of crossed modules of triangular Lie algebras,and that its third cohomology is trivial.
机构地区 滁州学院数学系
出处 《滁州学院学报》 2009年第5期108-109,共2页 Journal of Chuzhou University
基金 安徽高校省级自然科学研究项目(KJ2009B236Z KJ2008B248) 滁州学院科研项目(2008kj012B)
关键词 李代数的交叉模 三阶上同调群 上三角矩阵代数 crossed modules of Lie algebras third cohomology triangular Lie algebras
  • 相关文献

参考文献4

二级参考文献26

  • 1Kassel C,Loday J L. Extensions centrales d,alg'ebres de Lie[J]. Ann Inst Fourier (Grenoble), 1982, 32(4) :119-142.
  • 2Wagemann F. A crossed modules representing the Godbillon-Vey cocycle [J]. Letters in Mathematical Physics, 2000,51 (4) :293 - 299.
  • 3Wagemann F. On Lie algebra crossed modules [J ]. Comm Alg, 2006,34 (5) :1699 - 1722.
  • 4Zhang Hechun. A class of representative over the Virasoro algebras [J]. J Alg, 1997,190:1 - 10.
  • 5Rupet Wei Tze Yu. Algebras de Lie de type Witt [J]. Comm Alg, 1997,25(5) :1471 -1484.
  • 6[1]WHITEHEAD J H C.Combinatorial homotopy II[J].Bull Amer Math Soc,1949,55:453-496.
  • 7[2]KASSEL C,LODAY J L.Extensions centrales d,algebres de Lie[J].Ann Inst Fourier(Grenoble),1982,32(4):119-142.
  • 8[3]WAGEMANN F.A crossed modules representing the Godbillon-Vey cocycle[J].Letters in Mathematical Physics,2000,51:293-299.
  • 9[4]WAGEMANN F.On Lie algebra crossed modules[J].Comm Algebra,2006,34(5):1 699-1 722.
  • 10[7]ZHANG Hechun.A class of representative over the Virasoro algebras[J].J Alg,1997,190:1-10.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部