期刊文献+

具有损伤扁球面网壳非线性稳定性

NONLINEAR STABILITY OF THE SHALLOW RETICULATED SPHERICAL SHELLS WITH DAMAGE
下载PDF
导出
摘要 基于Lematire等效应变损伤原理,计及扁球面网壳各个杆件的损伤影响,根据薄壳非线性动力学理论推导出含有损伤扁球面网壳非线性动力学方程和协调方程,在固定夹紧边界条件下,用Galerkin方法得到一个含二次和三次非线性振动微分方程,并对具有损伤扁球面网壳的非线性自由振动方程求解.用Floquet指数法研究系统分叉问题给出了平衡点的状态.并通过数字仿真绘出了不同损伤状态下系统的分叉图和平衡点的相对位置图,发现损伤对系统的平衡点的状态影响较大. Based on the theory of Lematire's equivalent strain of the damage, taking into account the damage of bars of the shallow reticulated spherical shell, and according to nonlinear dynamical theory of thin shells, the nonlinear dynamical equations and the consistency equation of the shallow reticulated shells with damage were obtained by quasi - shell method. Under the fixed and clamped boundary conditions, a nonlinear differential oscillation equation with quadric and cubic items was presented by the Galerkin method, and a nonlinear free oscillation equation of the shallow reticulated shells with damage was solved. Then the bifurcation of the system was discussed by Floquet exponent method, and the state of the equilibrium point was given. Lastly the bifurcation map and the relative position map of the equilibrium point were plotted by numerical emulation under the different damage state. It is founded that the damage of the bars of the shells greatly impacts on the state of the equilibrium point.
作者 栗蕾 黄义
出处 《动力学与控制学报》 2009年第4期334-338,共5页 Journal of Dynamics and Control
基金 国家自然科学基金项目(59978038)资助~~
关键词 损伤 分叉 扁球面网壳 非线性 damage, bifurcation, the shallow reticulated spherical shell, nonlinear
  • 相关文献

参考文献9

  • 1Seung-Deogkim et al. Dynamic instability of shell-like shallow trusses considering damping. Computers and structure, 1997, 64(14) :481 -489.
  • 2Yasushi Uematsu, Osama Kuribara et al. Wind-induced dynamic behavior and its load estimation of a single-layer latticed dome with a long-span. Journal of wind Engineering and Industrial Aerodynamics,2001, 89:1671 - 1687.
  • 3Mircea Puta, Razvan Tudoran. Controllability Stability and the n-dimensional Toda lattice. Bullentin Dessciences Mathematiques, 2002,126 : 241 - 247.
  • 4Li Zhongxue, Shen Zuyan. Shaking table tests of two shallow reticulated shells. International journal of solids and structures ,2001,38:7875 - 7884.
  • 5Q s Li, J M Chen. Nonlinear elastoplastic analysis of single-layer reticulated shells subjected earthquake excitation. Computers and Structures, 2003, 81:177 -188.
  • 6王新志,梁从兴,韩明君,叶开沅,王钢.扁柱面网壳的非线性动力学行为[J].应用数学和力学,2007,28(2):135-140. 被引量:8
  • 7王新志,梁从兴,栗蕾,韩明君,丁雪兴.扁锥面单层网壳的非线性动力学特性[J].动力学与控制学报,2004,2(3):14-17. 被引量:9
  • 8王新志,梁从兴,丁雪兴,韩明君,赵永刚.单层扁锥面网壳非线性动力稳定性分析[J].工程力学,2005,22(S1):172-176. 被引量:5
  • 9栗蕾,黄义.具有初始缺陷扁球面网壳在大挠度下的非线性动力学特性[J].西安建筑科技大学学报(自然科学版),2009,41(1):32-36. 被引量:3

二级参考文献19

  • 1王新志,梁从兴,丁雪兴,韩明君,赵永刚.单层扁锥面网壳非线性动力稳定性分析[J].工程力学,2005,22(S1):172-176. 被引量:5
  • 2孙建恒,夏亨熹.网壳结构非线性动力稳定分析[J].空间结构,1994(1):25-31. 被引量:27
  • 3王新志,梁从兴,栗蕾,韩明君,丁雪兴.扁锥面单层网壳的非线性动力学特性[J].动力学与控制学报,2004,2(3):14-17. 被引量:9
  • 4曹正罡,范峰,沈世钊.单层球面网壳结构弹塑性稳定性能研究[J].工程力学,2007,24(5):17-23. 被引量:22
  • 5SEUNG-DEOGKIM. Dynamic instability of shell-like shallow trusses considering damping[J]. Computers and structure, 1997,64 (4) : 481-489.
  • 6YASUSHI UEMATSU, OSAMA KURIBARA. Wind-induced dynamic behavior and its load estimation of a single layer latticed dome with a long-span[J]. Journal of wind Engineering and Industrial Aerodynamics, 2001,89:1671- 1687.
  • 7MIRCEA PUTA, RAZVAN TUDORAN. Controllability Stability and the n-dimensional Toda lattice[J]. Bullentin Desscienees Mathematiques,2002,126 : 241-247.
  • 8LI Zhong-xue, SHEN Zu-yan. Shaking table tests of two shallow reticulated shells[J]. International journal of solids and structures, 2001,38 : 7875-7884
  • 9LI Q S, CHEN J M. CHEN. Nonlinear elastoplastic analysis of single-layer reticulated shells subjected earthquake excitation [J]. Computers and Structures, 2003,81 : 177-188.
  • 10[5]Afraimovich VS,Glebsky I Ya,Nekorkin Ⅵ.Stability of stationary states and spatial choas in multidimensional lattice dynamical systems.Random Comput Dynam,1994,2,287~303

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部