期刊文献+

基于新序列核支持向量机的说话人识别 被引量:1

Speaker Recognition Based on New Sequence Kernel SVM
下载PDF
导出
摘要 为了更好地将区分式分类方法应用于说话者确认系统中,构建序列核支持向量机已成为说话人识别领域的研究热点与趋势。本文在研究可再生希尔伯特空间框架的基础之上构建出一个新的序列核来对语音序列间的相似性进行度量,并结合近年来提出针对支持向量机(SVM)跨信道子空间特征差异(ISV)所提出的归整技术(LFA,NAP,CSP),进一步优化序列核系统。在美国国家标准与技术研究所(NIST)2004年评测数据集的实验中,新序列核系统的识别率高于传统高斯混合模型(GMM)和基于广义线性区分性核(GLDS)的支持向量机。 To apply the discriminative classifier in the speaker recognition, the building sequence kernel support vector machine (SVM) becomes the trend in the field. By using the framework of the reproducing kernel Hilbert space, a new sequence kernel for measuring the similarity between observations sequences is developped. By combining the later cross-channel compensation technologies (LFA, NAP, CSP), aimed at intersession variability (ISV), the sequence system is further optimized. The test evaluation database by the National Institute of Standards and Technology(NIST) 2004 demonstrates that the performance of the new sequence kernel system is superior to that of traditional Gaussian mixture model (GMM) and GLDS SVM.
作者 李杰 王成儒
出处 《数据采集与处理》 CSCD 北大核心 2009年第B10期25-28,共4页 Journal of Data Acquisition and Processing
关键词 支持向量机 序列核 CSP NAP 说话人识别 support vector machine (SVM) sequence kernel channel subspace projection (CSP) Nuisance attribute projection(NAP) speaker recognition
  • 相关文献

参考文献16

  • 1Reynolds D A, Quatieri T F, Dunn R. Speaker verification using adapted Gaussian mixture models[J]. Digital Signal Processing, 2000,10(1/3) : 19-41.
  • 2Schmidt M,Gish H. Speaker identification via support vector machines[C]//Proc ICASSP. 1996.
  • 3Wan V, Campbell W. Support vector machines for speaker verification and identification [C]//IEEE Proceeding. 2000.
  • 4Smith N, Gales M, Niranjan M. Data-dependent kernels in SVM classification of speech patterns[R]. Tech Rep CUED/FINFENG/TR. 387. Cambridge University Engineering, 2001.
  • 5Quan L,Bengio S. Hybrid generative-discriminative models for speech and speaker recognition[R]. Tech Rep IDIAP-RR 02-06, IDIAP. 2002.
  • 6Moreno P,Ho P. A new SVM approach to speaker identification and verification using probabilistic distance kernels[C]//Proc Eurospeech. 2003.
  • 7Kondor R, Jebara T. A kernel between sets of vectors[C]//Proc ICML. 2003.
  • 8Jaakkola T S, Haussler D. Exploiting generative models in discriminative classifiers [C]//Kearns M S, Solla S A, Cohn D A, eds. MIT Press,1998.
  • 9Wan V, Renals S. Speaker verification using sequence discriminant support vector machines [J]. IEEE Trans on Speech and Audio Processing, 2004.
  • 10Campbell W, Campbell J, Reynolds D, et al. Phonetic speaker recognition with support vector machines[C]//Proc NIPS. 2003.

同被引文献20

  • 1龙艳花,郭武,戴礼荣.用于SVM说话者确认系统的序列核[J].清华大学学报(自然科学版),2008,48(S1):688-692. 被引量:1
  • 2郭武,戴礼荣,王仁华.采用UBM更新量作为支持向量机特征的说话人确认[J].清华大学学报(自然科学版),2008,48(S1):704-707. 被引量:4
  • 3王飒,郑链.基于Fisher准则和特征聚类的特征选择[J].计算机应用,2007,27(11):2812-2813. 被引量:21
  • 4Kenny P, Boulianne G, Ouellet P. et al. Speaker and Session Variability in GMM -Based Speaker Verification[ C]// IEEE transactions on audio, speech, and language processing. USA : IEEE Press, 2007 : 1448 - 1460.
  • 5Campbell W, Sturim D, Reynolds D. Support vector machines using GMM supervectors for speaker verification [J]. Signal Process Letters, 2006, 13(5) :308 -311.
  • 6Chang Huai You, Kong Aik Lee, Haizhou Li. GMM - SVM Kernel With a Bhattacharyya - Based Distance for Speaker Recognition [ C ]// IEEE Transactions on Audio, Speech, and Language Processing. USA : IEEE Press, 2009 : 1300 - 1312.
  • 7Shan Zhong, Yuxiang Shan, Liang He, et al. Research on Intercession Variability Compensation for MLLR - SVM Speaker Recognition [J].IEICE Transactions on fundamentals of electronics, communications & computer sciences. USA: IEEE Press, 2009, E92/A (8) : 1913 - 1919.
  • 8Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation [ J ]. Pattern Analysis and Machine Intelligence, 2008, 31(2): 210-227.
  • 9Naseem I,Togneri R,Bennamoun M. Sparse Representation for Speaker Identification[ C]//20th International Conference on Pattern Recog- nition (ICPR), Istanbul. USA: IEEE Press, IEEE Press,2010:4460 -4463.
  • 10Micha! Aharon, Michael Elad, Alfred Bruckstein. K - SVD : An Algorithm for Designing Overcomplete Dictionaries for Sparse Representa- tion [ J]. IEEE Transactions on Signal Processing. USA: IEEE Press, 2006:4311 -4322.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部